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Critical care management – Major trauma

. Major trauma: any injury that endangers a person’s life or functional

integrity

⇧ a major source of death and disability, 3rd cause of loss of disability

adjusted life years (after cancer and CVD)

⇧ its socio-economic impact constitutes a public health challenge1

. Critical care management:

⇧ multiple agents and sites, di↵erent levels of care (scene of the

accident, control center, ambulance, resuscitation room, . . . )

1341

responses and these were then collated into a coherent 
approach to future trauma care. We have structured the 
agenda along the pathway of clinical priorities, consider-
ing haemorrhage first, then imaging and immediate man-
agement of traumatic brain injury, followed by aspects of 
general and neurocritical care.

!is article aims to describe recent improvements 
as well as controversies in the care of trauma and TBI 
patients. Considering the low level of evidence of many 
procedures or treatments for the care of trauma patients 
with or without TBI, we have highlighted the results of 
currently available randomised controlled trials (RCTs). 
We provide a glossary of abbreviations in supplemental 
Table 1 (eTable 1).

What is the current standard of care for delivering 
the best possible trauma critical care?
Statements are supported by RCTs [24], observational 
and interventional (non RCT) studies [1, 2, 7, 8, 10–13, 
15, 18], reviews [6, 9, 14, 16, 17, 19, 21, 23] and/or inter-
national recommendations [3–5, 20–22].

Trauma system developments and organization (Fig. 1) 
are crucial aspects of care to avoid suboptimal treatment, 

which is a major cause of preventable deaths within the 
first hours after trauma.

Overall application of the principles of damage control 
resuscitation (DCR) including damage control surgery 
(DCS) to bleeding trauma patients has resulted in sub-
stantial improvements in mortality over the past dec-
ade [1, 2], associated with improvements in critical care 
complications and critical care resource utilisation. Con-
temporary evidence-based guidelines for trauma care 
have recently been produced or updated [3–5]. Figure 2 
gives an overview of the standard of care for trauma 
patients.

Prehospital care
Contemporary trauma care starts in the immediate post-
injury period and considers prehospital and inhospital 
care as a continuum. Suboptimal care in the prehospi-
tal phase may alter outcome in the subsequent disease 
course, and prehospital practitioners as well as major 
trauma centres have considerably contributed to the 
recent and ongoing improvements in outcomes [6]. !ere 
are different actors that are crucially involved in the pre-
hospital care (e.g. basic response services, mobile medical 

Pre Hospital Care
Stopping major 

bleeding
(DCS, DCR)

No vital Risk
Life threatning

injuries
preventable death

Trauma center
Emergency room

Conventional
surgery and 
medical care

Hospital stay

DCR, DCS
Arterio-

Embolization

Specialized ICU

Rehabilitation…

HOME

Fig. 1 Current trauma system and organization in Western Europe. A trauma system is a chain of sequential specific procedures to provide quality 
response from the scene to the appropriate hospital. A central coordination with ongoing quality controls is warranted. Doing so will provide a 
network of trauma centres that can be mobilized in case of multicasualty events. DCR damage control resuscitation, DCS damage control surgery

From Asehnoune et al. (2017)
1Hay et al., “Global, regional, and national disability-adjusted life-years (DALYs): a systematic analysis for the Global Burden of Disease

Study 2016”, 2017; Gauss et al., “Strategic proposal for a national trauma system in France”, 2019.
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Critical care management – Major trauma

. Major trauma: any injury that endangers a person’s life or functional

integrity

⇧ a major source of death and disability, 3rd cause of loss of disability

adjusted life years (after cancer and CVD)

⇧ its socio-economic impact constitutes a public health challenge1

. Critical care management:

⇧ multiple agents and sites, di↵erent levels of care (scene of the

accident, control center, ambulance, resuscitation room, . . . )

⇧ quick decisions in complex context under time and resource

constraints, with high levels of uncertainty and stress

1Hay et al., “Global, regional, and national disability-adjusted life-years (DALYs): a systematic analysis for the Global Burden of Disease

Study 2016”, 2017; Gauss et al., “Strategic proposal for a national trauma system in France”, 2019.
3/49



Traumabase – A registry for major trauma patients in France

Id Center Accident Age Sex Weight Height BMI BP SBP SpO2 Lactates Hb Glasgow Transfusion . . .

1 Beaujon Fall 54 m 85 NA NA 180 110 97 NA 12.7 12 yes

2 Lille Other 33 m 80 1.8 24.69 130 62 100 4.8 11.1 15 no

3 Pitie Gun 26 m NA NA NA 131 62 100 3.9 11.4 3 no

4 Beaujon AVP moto 63 m 80 1.8 24.69 145 89 100 1.66 13 15 yes

6 Pitie AVP bicycle NA m 75 NA NA 104 86 100 NA 14.4 15 no

6 Pitie AVP pedes-

trian

30 w NA NA NA 107 66 100 NA 14.3 15 yes

7 HEGP White

weapon

16 NA 98 1.92 26.58 118 54 100 13 15.9 NA yes

9 Toulon White

weapon

20 m NA NA NA 124 73 100 NA 13.7 15 no

.

.

. . . .

.
.
.

. 2012 – Motivation: gather information to learn from, improve decisions and

assist patient care (initiated by Tobias Gauss & Sophie Hamada).

. Today:

⇧ >30,000 patients, 244 variables, 23 hospitals, >4,000 new patients/year

⇧ Complex and data-rich problem(s) ! many di↵erent problems and

solutions (di↵erent phases, di↵erent targets/indicators, etc.)
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Traumatic brain injury in major trauma patients

Focus of this thesis

Patients with traumatic brain injury (TBI)

& treatment with tranexamic acid (TXA)

. TBI: any identified cerebral injury; > 60M cases/year, first cause of

death and disability among major trauma2.

. 8,248 patients with TBI in our reference database.

. Various treatments exist for TBI (intracranial pressure control, maintenance of

cerebral perfusion pressure and avoidance of secondary injuries, decompressive craniectomy).

. TXA: an antifibrinolytic agent (prevents plasmin from binding to fibrin).

2Rubiano et al., “Global neurotrauma research challenges and opportunities”, 2015.
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Traumatic brain injury in major trauma patients

Focus of this thesis

.. Patients with traumatic brain injury (TBI)

& treatment with tranexamic acid (TXA)

Challenges with the Traumabase® data

incomplete heterogeneous observational

Goal of my thesis

Address these challenges from a causal inference perspective.

. Can we estimate the e↵ect from TXA on TBI patients with evidence

from the Traumabase®?

. How do the results compare to other findings on this question?

5/49



Contributions of this thesis

I Consistently and e�ciently estimate treatment e↵ects with incomplete

and heterogeneous attributes

⇧ Impact of missingness on identifiability

⇧ Doubly robust machine learning for informative missingness

II Generalize treatment e↵ects to di↵erent target populations

⇧ Context and state of the art

⇧ Multiple imputation strategies for incomplete multi-source attributes

III Provide ready-to-use and easily accessible tools for other applications

⇧ R-miss-tastic – Platform for missing values problems and methods

⇧ Traumabase® data analysis, integrative RCT and registry data

analysis, AP–HP COVID-19 data analysis,

6/49
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The role of missing data
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Not Informed
Not Made
Not Applicable
Impossible
Not Determined

Percentage of missing values

. Standard (implicit) practice: list-wise deletion or complete case analysis

. But ”One of the ironies of Big Data is that missing data play an ever more

significant role” (R. Samworth, 2019)

⇧ Loss of information
An n ⇥ p matrix, each entry is missing with probability 0.01.

p = 5 =) ⇡ 95% of rows kept; p = 300 =) ⇡ 5% of rows kept.

⇧ Bias in the analysis

Resulting sample is generally not representative of the target population.

! How to deal with missing values?
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The role of missing data
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Percentage of missing values

. Standard (implicit) practice: list-wise deletion or complete case analysis

. But ”One of the ironies of Big Data is that missing data play an ever more

significant role” (R. Samworth, 2019)

⇧ Loss of information
An n ⇥ p matrix, each entry is missing with probability 0.01.

p = 5 =) ⇡ 95% of rows kept; p = 300 =) ⇡ 5% of rows kept.

⇧ Bias in the analysis

Resulting sample is generally not representative of the target population.

! How to deal with missing values?
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How to deal with missing values?

There is no single best solution because it depends on

. the type of missing values

. the purpose of the statistical analysis.

A brief (and incomplete) history of missing values in statistical analyses2

2Based on a talk by R. Little (2020). 9/49



Rubin’s missing values mechanisms taxonomy3

Idea: characterize the link between the

(full) data and the missing values.

Missing values in y (Blood Pressure)

– x (Gravity) always observed

1. Missing Completely At Random

(MCAR)

Probability to be missing depends

neither on observed information nor on

unobserved information. 5 10 15
Gravity score (GCS)
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2. Missing At Random (MAR)

Probability to be missing depends on

observed information.
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Gravity score (GCS)
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3. Missing Not At Random (MNAR)

Probability to be missing depends on

unobserved information.
5 10 15
Gravity score (GCS)

0

100

200

S
ys

to
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B
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od
P

re
ss

ur
e

3Rubin, “Inference and missing data”, 1976. 10/49



Estimation and inference with missing values

One of the most popular methods: multiple imputation4.

? ?
?

?

?
?

??

?
?

??

?
?
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! Rubin’s rules for aggregation (estimator and its variance).

! Variance estimation reflects uncertainty due to the missing values.
4Rubin, “Bayesian inference for causal e↵ects: The role of randomization”, 1978; Buuren, Flexible Imputation of Missing Data. Second

Edition, 2018.
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Supervised learning with missing values

Di↵erent from classical regression & inference tasks.

Goal: Predict an outcome Y given X ⇤ ,
(

X if X is observed

NA otherwise
Data: train & test sets with missing values

Existing solutions5:

1. For almost all imputation functions, an impute-then-regress

procedure with a powerful learner is Bayes optimal; e.g. mean

imputation.

2. Possibility to skip the imputation and directly regress: random forest

predictors with a di↵erent splitting criterion handling half-discrete

X ⇤: missing incorporated in attributes.

5Josse et al., “On the consistency of supervised learning with missing values”, 2019; Morvan et al., “What’s a good imputation to predict

with missing values?”, 2021.
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Supervised learning with missing values

Di↵erent from classical regression & inference tasks.

Goal: Predict an outcome Y given X ⇤ ,
(

X if X is observed

NA otherwise
Data: train & test sets with missing values

Existing solutions5:

1. For almost all imputation functions, an impute-then-regress

procedure with a powerful learner is Bayes optimal; e.g. mean

imputation.

2. Possibility to skip the imputation and directly regress: random forest

predictors with a di↵erent splitting criterion handling half-discrete

X ⇤: missing incorporated in attributes.

5Josse et al., “On the consistency of supervised learning with missing values”, 2019; Morvan et al., “What’s a good imputation to predict

with missing values?”, 2021.
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Missing incorporated in attributes7

Random trees with a di↵erent splitting criterion to account for NA

Method: Recursively, find which partition P minimizes

E
h
(Y � P(X⇤))2

i
,

where, for each feature j and each threshold ✓, there are three possible

partitions,

{X ⇤
j
 ✓ or X ⇤

j
= NA} VS {X ⇤

j
> ✓}

{X ⇤
j
 ✓} VS {X ⇤

j
> ✓ or X ⇤

j
= NA}

{X ⇤
j
6= NA} VS {X ⇤

j
= NA}

! targets the Bayes estimate E[Y |X⇤]

Implemented in the grf R package.6

6Tibshirani et al., grf: Generalized Random Forests, 2020.
7Twala, Jones, and Hand, “Good methods for coping with missing data in decision trees”, 2008.
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Causality in statistics

X Y

?

?

Correlation is not causation.

Overall mortality rate in TBI patients in the

Traumabase®: 16%.

. Mortality rate among the TXA treated: 28%

. Mortality rate among the control: 13%

Is the treatment harmful?

. ‘What causes what?’ is not a question we can or aim to answer. But

we can answer to ‘what is the e↵ect of a defined manipulation?’ (D.

Rubin, OCIS 2021)
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Potential outcomes framework (Neyman, 1923; Rubin, 1974)

Causal e↵ect

. n i.i.d. samples ( Xi|{z}
context

,

treatmentz}|{
Wi , Yi (1),Yi (0)| {z }

potential outcomes

) 2 X ⇥ {0, 1}⇥ Y ⇥ Y

. Individual causal e↵ect of the treatment:

�i , Yi (1)� Yi (0)

! Missingness problem: �i never observed (observe 1 outcome/unit)

Covariates Treatment Outcome(s)
X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? Alive
-6 45 F 0 Dead ?
0 15 M 1 ? Alive

. . . . . . . . . . . .
-2 52 M 0 Alive ?

Average treatment e↵ect (ATE): ⌧ , E[�i ] = E[Yi (1)� Yi (0)]

16/49



Potential outcomes framework (Neyman, 1923; Rubin, 1974)

Causal e↵ect

. n i.i.d. samples ( Xi|{z}
context

,

treatmentz}|{
Wi , Yi (1),Yi (0)| {z }

potential outcomes

) 2 X ⇥ {0, 1}⇥ Y ⇥ Y

. Individual causal e↵ect of the treatment:

�i , Yi (1)� Yi (0)

! Missingness problem: �i never observed (observe 1 outcome/unit)

Covariates Treatment Outcome(s)
X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? Alive
-6 45 F 0 Dead ?
0 15 M 1 ? Alive

. . . . . . . . . . . .
-2 52 M 0 Alive ?

Average treatment e↵ect (ATE): ⌧ , E[�i ] = E[Yi (1)� Yi (0)] 16/49



Identifiability of the ATE

. Straightforward in experimental data (randomized controlled trial,

RCT) — by design ( ).

. Requires assumptions in case of non-randomized or observational data.

Treatment assignment W depends on covariates X

) Treated and control groups di↵er at baseline.

) The data is confounded.

17/49



Assumptions for ATE identifiability in observational data

1. SUTVA

Y = WY (1) + (1�W )Y (0)

2. Unconfoundedness - selection on observables

{Yi (0),Yi (1)} ?? Wi |Xi

Treatment assignment Wi is random, conditionally on covariates Xi .

3. Overlap

Define propensity score as e(x) , P(Wi = 1 |Xi = x), 8 x 2 X .

Assume

9⌘ > 0, s.t. ⌘ < e(x) < 1� ⌘, 8 x 2 X .

18/49



Estimation of the ATE

Di↵erent estimators have been proposed since the 1980’s and can be

summarized by 4 di↵erent classes:

1. Regression adjustment

2. Balance the di↵erences between the two groups: inverse propensity

weighting (IPW), matching

3. Extrapolate fitted models from one group to the other: g-formula

4. Combine the two: CBPS, AIPW, and other doubly robust

estimators8

Except for approach 1, all methods consider ⌧ as a (population) causal

parameter, not as a model parameter to estimate directly.

8Robins, Rotnitzky, and Zhao, “Estimation of Regression Coe�cients When Some Regressors are not Always Observed”, 1994.
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Doubly robust ATE estimation

Idea: combine di↵erent models to e�ciently use the data and to protect

against mis-specification.

Model the propensity score & the conditional outcomes

nuisance parameters ⌘
(

W ⇠ X , e(x)

Y (w) ⇠ X , µ(w)(x) , E[Yi (w) |Xi = x ]

Augmented IPW

⌧̂AIPW , 1
n

P
n

i=1

⇣
µ̂(1)(Xi )� µ̂(0)(Xi ) +Wi

Yi�µ̂(1)(Xi )

ê(Xi )
� (1�Wi )

Yi�µ̂(0)(Xi )

1�ê(Xi )

⌘

is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.
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Doubly robust ATE estimation

Idea: combine di↵erent models to e�ciently use the data and to protect

against mis-specification.

Model the propensity score & the conditional outcomes

nuisance parameters ⌘
(

W ⇠ X , e(x)

Y (w) ⇠ X , µ(w)(x) , E[Yi (w) |Xi = x ]

Augmented IPW

⌧̂AIPW , 1
n

P
n

i=1

⇣
µ̂(1)(Xi )� µ̂(0)(Xi ) +Wi

Yi�µ̂(1)(Xi )

ê(Xi )
� (1�Wi )

Yi�µ̂(0)(Xi )

1�ê(Xi )

⌘

is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.

Recent result from 20189: Double Machine Learning

Extends the previous to use any (machine learning) procedure such as

random forests, deep nets, etc. to estimate ê(x) and µ̂(w)(x) without

harming the interpretability of the causal e↵ect estimation.
9Chernozhukov et al., “Double/debiased machine learning for treatment and structural parameters”, 2018.
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Contributions of this thesis

I Consistently and e�ciently estimate treatment e↵ects with incomplete

and heterogeneous attributes

⇧ Impact of missingness on identifiability

⇧ Doubly robust machine learning for informative missingness

II Generalize treatment e↵ects to di↵erent target populations

⇧ Context and state of the art

⇧ Multiple imputation strategies for incomplete multi-source attributes

III Provide ready-to-use and easily accessible tools for other applications

⇧ R-miss-tastic – Platform for missing values problems and methods

⇧ Traumabase® data analysis, integrative RCT and registry data

analysis, AP–HP COVID-19 data analysis,
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Missing values in the covariates

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

NA 20 F 1 ? Alive
-6 45 NA 0 Dead ?

0 NA M 1 ? Alive
NA 32 F 1 ? Dead
1 63 M 1 Dead ?

-2 NA M 0 Alive ?

Three families of methods with di↵erent sets of assumptions

1. Unconfoundedness despite missingness

2. Full data unconfoundedness + classical missing values mechanisms

3. Latent unconfoundedness + classical missing values mechanisms

Joint work with E. Sverdrup, T. Gauss, J.-D. Moyer, S. Wager, J. Josse10

10Mayer et al., “Doubly robust treatment e↵ect estimation with missing attributes”, 2020.
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Missing values in the covariates

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

NA 20 F 1 ? Alive
-6 45 NA 0 Dead ?

0 NA M 1 ? Alive
NA 32 F 1 ? Dead
1 63 M 1 Dead ?

-2 NA M 0 Alive ?

Three families of methods with di↵erent sets of assumptions

1. Unconfoundedness despite missingness

! unconfoundedness holds conditionally on incomplete X

2. Full data unconfoundedness + classical missing values mechanisms

! missing values are ignorable and don’t a↵ect causal identifiability

3. Latent unconfoundedness + classical missing values mechanisms

! confounders are latent, we observe incomplete proxies

Joint work with E. Sverdrup, T. Gauss, J.-D. Moyer, S. Wager, J. Josse10
10Mayer et al., “Doubly robust treatment e↵ect estimation with missing attributes”, 2020. 23/49



1. Treatment is unconfounded given X ⇤

Notation:
. response pattern R 2 {0, 1}p, Rj , 1{Xj is observed},

. X⇤ , R� X + (1� R)� NA 2 {R [ NA}p

X ⇤ ⌘ observed covariates + response pattern.

Unconfoundedness despite missingness (UDM)11 ,12

{Yi (1),Yi (0)} ?? Wi |X ⇤

Note: no assumption on the missingness mechanism.

Doctors decide to treat a patient based on what they observe.

& We have access to the same information as the doctors.

Example

For patient 1, the doctor observes temperature, heart rate and blood pressure,

and makes the decision based on this.

For patient 2, the doctor observes temperature and heart rate and cannot measure

BP, and bases the treatment decision on these 3 elements of information.
11Mattei and Mealli, “Estimating and using propensity score in presence of missing background data: an application to assess the impact

of childbearing on wellbeing”, 2009.
12Blake et al., “Estimating treatment e↵ects with partially observed covariates using outcome regression with missing indicators”, 2020. 24/49



Outline

1. Introduction

Critical care management & Traumabase

Missing data

Causal inference

2. Treatment e↵ect estimation with incomplete attributes

Identifiability with incomplete attributes

Doubly robust treatment e↵ect estimation with incomplete attributes

Data analysis on the Traumabase® registry

3. Generalizing treatment e↵ects

Context and state of the art

Generalizing with incomplete source and target samples

4. Conclusion

25/49



Under UDM: Tree-based estimation with missing values

Generalized nuisance parameters13

e⇤(x⇤) , P(W = 1 |X ⇤ = x⇤) and µ⇤
(w)(x

⇤) , E[Y (w) |X ⇤ = x⇤]

⌘ 1 model / pattern:
P

r2{0,1}d E
⇥
Z |Xobs(r),R = r

⇤
1R=r , Z 2 {W ,Y (0),Y (1)}.

AIPW with missing values

c⌧⇤AIPW , 1
n

P
i

 
dµ⇤
(1)(Xi )�dµ⇤

(0)(Xi ) +Wi

Yi�dµ⇤

(1)
(Xi )

ce⇤(Xi )
� (1�Wi )

Yi�dµ⇤

(0)
(Xi )

1�ce⇤(Xi )

!

Under mild assumptions on the nuisance parameter estimators14,
c⌧⇤

AIPW is
p
n-consistent and asymptotically normal.

! Recall the supervised learning with missing values.15

. Mean imputation is consistent with a powerful learner.

. Alternative for tree-based predictors: Missing Incorporate in

Attributes (MIA).

13Rosenbaum and Rubin, “Reducing bias in observational studies using subclassification on the propensity score”, 1984

14Wager and Athey, “Estimation and inference of heterogeneous treatment e↵ects using random forests”, 2018

15Morvan et al., “What’s a good imputation to predict with missing values?”, 2021.
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Methods to handle missing values for ATE estimation

Covariates Missingness Unconfoundedness Models for
(W ,Y )

multiva-
riate

normal

general M(C)AR MNAR Case 1
UDM

Case 2
Classical

Case 3
Latent

logistic-
linear

non-
param.

(SA)EM 3 7 3 7 3 7 7 3 7

MIA 3 3 3 3 3 7 7 3 3

Mult. Imputation 3 3 3 7 7 3 7 3 (7)

MissDeepCausal 3 3 3 7 7 7 3 3 3

3 can be handled, 7 not applicable in theory, (7) no theoretical guarantees but heuristics
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Methods to handle missing values for ATE estimation

Covariates Missingness Unconfoundedness Models for
(W ,Y )

multiva-
riate

normal

general M(C)AR MNAR Case 1
UDM

Case 2
Classical

Case 3
Latent

logistic-
linear

non-
param.

(SA)EM 3 7 3 7 3 7 7 3 7

MIA 3 3 3 3 3 7 7 3 3

Mult. Imputation 3 3 3 7 7 3 7 3 (7)

MissDeepCausal 3 3 3 7 7 7 3 3 3

3 can be handled, 7 not applicable in theory, (7) no theoretical guarantees but heuristics

Apply under UDM assumption

No assumption on the missingness mechanism is made.

. MIA ! seen today

. (SA)EM ! maximum-likelihood approximation of observed likelihood using

EM algorithm16. Contribution in Mayer et al., AOAS (2020)

16Jiang et al., “Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling

framework”, 2020
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Methods to handle missing values for ATE estimation

Covariates Missingness Unconfoundedness Models for
(W ,Y )

multiva-
riate

normal

general M(C)AR MNAR Case 1
UDM

Case 2
Classical

Case 3
Latent

logistic-
linear

non-
param.

(SA)EM 3 7 3 7 3 7 7 3 7

MIA 3 3 3 3 3 7 7 3 3

Mult. Imputation 3 3 3 7 7 3 7 3 (7)

MissDeepCausal 3 3 3 7 7 7 3 3 3

3 can be handled, 7 not applicable in theory, (7) no theoretical guarantees but heuristics

Applies under full data unconfoundedness and MAR

Multiple imputation solutions.

. ⌧̂MI

IPW ! existing works on consistency and applications16

. ⌧̂MI

AIPW ! contribution in Mayer et al., AOAS (2020)

16Seaman and White, “Inverse probability weighting with missing predictors of treatment assignment or missingness”, 2014; Mattei and

Mealli, “Estimating and using propensity score in presence of missing background data: an application to assess the impact of childbearing

on wellbeing”, 2009
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Methods to handle missing values for ATE estimation

Covariates Missingness Unconfoundedness Models for
(W ,Y )

multiva-
riate

normal

general M(C)AR MNAR Case 1
UDM

Case 2
Classical

Case 3
Latent

logistic-
linear

non-
param.

(SA)EM 3 7 3 7 3 7 7 3 7

MIA 3 3 3 3 3 7 7 3 3

Mult. Imputation 3 3 3 7 7 3 7 3 (7)

MissDeepCausal 3 3 3 3 7 7 3 3 3

3 can be handled, 7 not applicable in theory, (7) no theoretical guarantees but heuristics

Applies under latent unconfoundedness

True confounders are latent variables, we observe incomplete proxies,

e.g., IQ as a proxy for intelligence or temperature and CRP for an infection.

. Matrix factorization and regression adjustment ! existing results on

consistency and applications16

. MissDeepCausal ! non-linear latency structure via variational auto-

encoders (VAE), contribution in Mayer, Vert & Josse (2020)17

17Kallus, Mao, and Udell, “Causal Inference with Noisy and Missing Covariates via Matrix Factorization”, 2018

17Mayer et al., MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models, 2020
27/49



Methods to handle missing values for ATE estimation

Covariates Missingness Unconfoundedness Models for
(W ,Y )

multiva-
riate

normal

general M(C)AR MNAR Case 1
UDM

Case 2
Classical

Case 3
Latent

logistic-
linear

non-
param.

(SA)EM 3 7 3 7 3 7 7 3 7

MIA 3 3 3 3 3 7 7 3 3

Mult. Imputation 3 3 3 7 7 3 7 3 (7)

MissDeepCausal 3 3 3 7 7 7 3 3 3

3 can be handled, 7 not applicable in theory, (7) no theoretical guarantees but heuristics

Performances

Our extensive simulation study corroborates that due to the di↵erent

identifiability assumptions there is no overall best performing method,

but the proposed methods perform well under the corresponding assump-

tions.

27/49



Outline

1. Introduction

Critical care management & Traumabase

Missing data

Causal inference

2. Treatment e↵ect estimation with incomplete attributes

Identifiability with incomplete attributes

Doubly robust treatment e↵ect estimation with incomplete attributes

Data analysis on the Traumabase® registry

3. Generalizing treatment e↵ects

Context and state of the art

Generalizing with incomplete source and target samples

4. Conclusion

28/49



Recall our initial problem and question

. Question: Is there a benefit from tranexamic acid (TXA) for traumatic brain

injury (TBI) patients in terms of mortality reduction?

. Data: Traumabase® registry with 8,248 TBI patients.

Simplified causal graph produced using DAGitty16

Step 1: Identify relevant
covariates through a
Delphi process17

. 18 confounders

. 22 predictors of Y only

16Textor, Hardt, and Knüppel, “DAGitty: a graphical tool for analyzing causal diagrams”, 2011

17Jones and Hunter, “Consensus methods for medical and health services research.”, 1995
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Recall our initial problem and question

. Question: Is there a benefit from tranexamic acid (TXA) for traumatic brain

injury (TBI) patients in terms of mortality reduction?

. Data: Traumabase® registry with 8,248 TBI patients.

Confounders

Other predictors 
of outcome

Treatment Outcome
Simplified causal graph produced using DAGitty16

Step 1: Identify relevant
covariates through a
Delphi process17

. 18 confounders

. 22 predictors of Y only

16Textor, Hardt, and Knüppel, “DAGitty: a graphical tool for analyzing causal diagrams”, 2011

17Jones and Hunter, “Consensus methods for medical and health services research.”, 1995
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Results

Emulation of a recent RCT18

Tranexamic acid for the treatment of significant 
traumatic brain injury: an international randomised, 

double blind placebo controlled trial

RATIONALE AND OVERVIEW 

Protocol Code: ISRCTN15088122
V 1.1 date 27 Sep 2016

18Cap, “CRASH-3: a win for patients with traumatic brain injury”, 2019.
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Results

ATE estimation for the e↵ect of tranexamic acid on D-28 head-injury related mortality

for TBI patients.

MIA_AIPW

MICE_AIPW

Difference_in_means

0.0 0.1 0.2 0.3
ATE

Observational data 
(unadjusted)

Observational data 
(17+21 variables)

RCT − CRASH−3 
(3+4 variables)

RCT  ATE

Unadjusted 
observational ATE

Observational
ATE

MIA

Multiple Imputation

(y -axis: estimation approach), (x-axis: ATE estimation with bootstrap CI)

⌧ = 0 : “No average e↵ect”, ⌧ < 0 : “TXA reduces mortality”.
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Contributions of this thesis

I Consistently and e�ciently estimate treatment e↵ects with incomplete

and heterogeneous attributes

⇧ Impact of missingness on identifiability

⇧ Doubly robust machine learning for informative missingness

II Generalize treatment e↵ects to di↵erent target populations

⇧ Context and state of the art

⇧ Multiple imputation strategies for incomplete multi-source attributes

III Provide ready-to-use and easily accessible tools for other applications

⇧ R-miss-tastic – Platform for missing values problems and methods

⇧ Traumabase® data analysis, integrative RCT and registry data

analysis, AP–HP COVID-19 data analysis,
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RCT - Ground truth?

“Gold standard” to assess the causal e↵ect of an intervention or

treatment on an outcome. ⌧ is identifiable by design.

!The covariate distributions of treated and control groups are

balanced Control group looks like treatment group: di↵erence in response is

attributable to treatment.

Randomized Controlled Trial (RCT)

. Simple unbiased estimate of the

ATE, but often on narrowly defined

populations

. Examples:

⇧ Evidence-based medicine,

⇧ Economic experiments,

⇧ A/B testing.

. High internal validity

Observational data

. Large amounts of data reflecting

day-to-day practice, but with

confounding

. Examples:

⇧ Electronic Health Records (EHR),

⇧ Public policy evaluations,

⇧ Social sciences usage.

. High external validity
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Leverage both RCT and observational data

RCT

� Narrowly defined population

+ High internal validity

Observational data

� Confounding

+ High external validity

We could use both to . . .

. . . . validate observational methods.
! Contribution in Mayer et al. (2021)18

. . . . correct confounding bias, ground the observational data.

. . . . improve estimation of heterogeneous treatment e↵ects and

long-term e↵ects.

. . . . generalize the ATE to a (broader) target population.

18Mayer et al., “Machine Learning Augmented Causal Inference To Estimate The Treatment E↵ect of Tranexamic Acid In Traumatic Brain

Injury”, 2021

19Dagan et al., “BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting”, 2021.
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Leverage both RCT and observational data

RCT

� Narrowly defined population

+ High internal validity

Observational data

� Confounding

+ High external validity

We could use both to . . .

. . . . validate observational methods. Contribution in Mayer et al. (2021)18

. . . . correct confounding bias, ground the observational data.

. . . . improve estimation of heterogeneous treatment e↵ects.

. . . . generalize the ATE to a (broader) target population.

Di↵erences between findings from RCT on Pfizer COVID-19 vaccine

e�cacy and emulated trial from large obs. data on vaccine e↵ectiveness19.

! Reduce the time and cost to approve a drug for patients who could

benefit from it.
18Mayer et al., “Machine Learning Augmented Causal Inference To Estimate The Treatment E↵ect of Tranexamic Acid In Traumatic Brain

Injury”, 2021

19Dagan et al., “BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting”, 2021.
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Notations for joint analysis

Joint work with Bénédicte Colnet, Julie Josse, Gaël Varoquaux, Jean-Philippe

Vert, Shu Yang, and others.

. We introduce S an indicator of eligibility for the trial & willingness to

participate

. The distribution of covariates X is not the same in the target

population and in the RCT,

fX |S=1 6= fX

0.0

0.1

0.2

0.3

6 8 10
Hemoglobin level (mmol/L)

RCT
Target
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Notations for joint analysis

Joint work with Bénédicte Colnet, Julie Josse, Gaël Varoquaux, Jean-Philippe

Vert, Shu Yang, and others.

. We introduce S an indicator of eligibility for the trial & willingness to

participate

. The distribution of covariates X is not the same in the target

population and in the RCT,

fX |S=1 6= fX

) ⌧1 = E[Y (1)� Y (0)|S = 1]| {z }
ATE in the RCT

6= E[Y (1)� Y (0)] = ⌧| {z }
Target ATE

.
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Intuition of the generalization task

Set
Covariates Treatment

Outcome

under W

X1 X2 X3 W Y

1 R 1.1 20 5.4 1 24.1

. . . R . . . . . . . . .

n � 1 R -6 45 8.3 0 26.3

n R 0 15 6.2 1 23.5

n + 1 O -2 52 7.1 NA NA

n + 2 O -1 35 2.4 NA NA

. . . O . . . NA NA

n + m O -2 22 3.4 NA NA

Available data with observed treatment and outcome only in the RCT.

Idea: Use a sample of the target population to generalize ⌧ .20

Typical estimators of ⌧ rely on di↵erent formulae and are obtained by:

. weighting the RCT sample so that it fits the target population distribution

(IPSW)

. modeling the conditional outcomes and extrapolate to the target population

sample (G-formula)

. combining the previous two ideas (doubly robust approaches: AIPSW,

Calibration Weighting)

20Other terms are data fusion, transportability, covariate shift.
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Available data with observed treatment and outcome only in the RCT.

Idea: Use a sample of the target population to generalize ⌧ .20

Typical estimators of ⌧ rely on di↵erent formulae and are obtained by:

. weighting the RCT sample so that it fits the target population distribution

(IPSW)

. modeling the conditional outcomes and extrapolate to the target population

sample (G-formula)

. combining the previous two ideas (doubly robust approaches: AIPSW,

Calibration Weighting)

20Other terms are data fusion, transportability, covariate shift.
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Assumptions for generalized ATE identifiability

Ignorability assumption on trial participation (S-ignorability)

{Y (0),Y (1)} ?? S | X

X contains all covariates that are treatment e↵ect modifiers and with a

distributional shift.

Positivity of trial participation

Selection score: ⇡S(x) , P(Si = 1 | Xi = x) 8 x 2 X .

Assume 9 c > 0, such that 8x 2 X , ⇡S(x) � c > 0.

Each individual from the target population had a non-zero probability to

be eligible for the trial.
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State of the art for generalization

Review of the state of the art

The state of the art has been reviewed from a theoretical, practical

and empirical perspective in Colnet, Mayer, et al. (under review at

Statistical Science, 2020).21

Augmented inverse probability of sampling weighting (AIPSW)22

b⌧AIPSW,n,m , 1

n

nX

i=n

1

b↵n,m(Xi )


Wi {Yi � bµ1,1,n(Xi )}

e1(Xi )
�

(1 � Wi ) {Yi � bµ0,1,n(Xi )}
1 � e1(Xi )

�

+
1

m

n+mX

i=n+1

{bµ1,1,n(Xi ) � bµ0,1,n(Xi )} .

where ↵(x) is the conditional odds of RCT selection.
b⌧AIPSW,n,m is a doubly robust estimator of ⌧ .

Details on this estimator

Alternative doubly robust estimator: (Augmented) Calibration Weighting23

21Colnet et al., “Causal inference methods for combining randomized trials and observational studies: a review”, 2020

22Dahabreh et al., “Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals”, 2019.
23Dong et al., “Integrative analysis of randomized clinical trials with real world evidence studies”, 2020.
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State of the art for generalization

Review of the state of the art

The state of the art has been reviewed from a theoretical, practical

and empirical perspective in Colnet, Mayer, et al. (under review at

Statistical Science, 2020).21

Augmented inverse probability of sampling weighting (AIPSW)22

b⌧AIPSW,n,m , 1

n

nX

i=n

1

b↵n,m(Xi )


Wi {Yi � bµ1,1,n(Xi )}

e1(Xi )
�

(1 � Wi ) {Yi � bµ0,1,n(Xi )}
1 � e1(Xi )

�

+
1

m

n+mX

i=n+1

{bµ1,1,n(Xi ) � bµ0,1,n(Xi )} .

where ↵(x) is the conditional odds of RCT selection.
b⌧AIPSW,n,m is a doubly robust estimator of ⌧ .

Details on this estimator

Alternative doubly robust estimator: (Augmented) Calibration Weighting23

21Colnet et al., “Causal inference methods for combining randomized trials and observational studies: a review”, 2020

22Dahabreh et al., “Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals”, 2019.
23Dong et al., “Integrative analysis of randomized clinical trials with real world evidence studies”, 2020.
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Recall again the missing data challenge of the Traumabase®
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Variable

Pe
rc

en
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ge

NA
Not Informed
Not Made
Not Applicable
Impossible
Not Determined

Percentage of missing values

Set
Covariates Treatment Outcome

X⇤1 X
⇤
2 X

⇤
3 W Y

1 R NA 20 5.4 1 24.1

. . . R . . . . . . . . .

n � 1 R -6 NA 8.3 0 26.3

n R 0 15 6.2 1 23.5

n + 1 O NA NA 7.1 NA NA

n + 2 O -1 35 NA NA NA

. . . O . . . NA NA

n + m O -2 NA 3.4 NA NA

! How do these missing values impact identifiability and estimation of

the generalized ATE?
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Impact of missing values on identifiability

Identifiability in the complete data case in a nutshell:

Everyone has a non-zero chance to be eligible and that conditionally on

attributes, the treatment e↵ect is stable across populations.

Two solutions for identifiability with missing values

1. Conditionally independent selection (CIS)

{Y (0),Y (1)} ?? S | X ⇤

! eligibility and selection depend on the missingness pattern

e.g., trial with a list of 10 eligibility criteria and only 5 out of these

need to be satisfied. For ind. 1, criteria C1,C9,C7,C2,C3 are ob-

served and he is included before recording C4,C5,C6,C8,C10.

2. Full data S-ignorability + classical missingness assumptions

(MCAR, MAR)

! missing values don’t alter selection or outcome models
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Estimation under Assumption 2 – Multiple imputation

In case of integrative analysis, less straightforward.

We explore several strategies with di↵erent imputation models for the

multi-source case:
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Estimation under Assumption 2 – Multiple imputation

In case of integrative analysis, less straightforward.

We explore several strategies with di↵erent imputation models for the

multi-source case:

?

?

? ?

?

??

?

?

?

?

?

? ?

?
?

?

?

?

m
n

"̂1 "̂2 … "̂M

Original 
observational data

Original RCT Imputation 1 Imputation 2

…

"̂ = 1
%&

"#$

%
'""

Q

Imputation M

Q Q Q

Qi , R1{i2RCT} +O1{i2Obs.}

Best performance in simulation study24: joint fixed e↵ect multiple

imputation (joint dataset, with source indicator Q).

24In terms of bias of the ATE estimator. Di↵erent scenarios varying S�ignorability,

missingness mechanism and proportion, absolute and relative sample sizes.
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Simulation study – Bias of ⌧̂

Under full data S�ignorability and MCAR & MAR mechanisms.

nRCT = n = 1000, nObs = m = 10⇥ n.
Covariates Treatment Outcome

S Source X1 X2 X3 X4 W Y

1 1 RCT NA 20 F 5 1 -166

.

.

.

1 RCT . . . : :

1 RCT -6 45 F 6 0 111

n 1 RCT 0 15 M NA 1 -48

n + 1 0 Obs. -2 52 M 18

.

.

.

0 Obs . . .

1 Obs -1 NA NA 1

n + m 0 Obs -2 NA M 32

. Sample of size 50n, Xi ⇠ N ((1, 1, 1, 1), I4).

. Generate S : logit {⇡S (X )} = ⌘0 � 0.5X1 � 0.3X2 � 0.5X3 � 0.4X4, (where ⌘0 such that

E[⇡S (X )] = 1/50). Keep S = 1 observations as RCT.

. Generate W : Wi ⇠ B(0.5).

. Generate Y (w):

Y (w) = �100 + 27.4wX1 + X2 + 13.7X3 + 13.7 + X4 + ✏ with ✏ ⇠ N (0, 1)

. Sample of size m, Xi ⇠ N ((1, 1, 1, 1), I4) as observational data.

. Generate R for RCT and observational data under MCAR or MAR:

logit(P(Ri· = r |Xi )) = �0 + Xi,obs(r)�, where � is chosen such that we have 30% of missing

values in X .

The population ATE ⌧ = 27.4
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Simulation study – Bias of ⌧̂

Under full data S�ignorability and MCAR & MAR mechanisms.

nRCT = n = 1000, nObs = m = 10⇥ n.
MCAR MAR
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Back to our Traumabase® and medical question...

Is there an e↵ect of tranexamic acid (TXA) on mortality among patients

with severe brain injuries (TBI)?

Randomized Controlled Trial

CRASH-2

. 40 di↵erent countries

. 3727 patients

Concludes on beneficial e↵ect of

TXA for TBI with severe

extracranial hemorrhage.

Target population

Traumabase®

. 23 French Trauma centers

. 8270 patients

Concludes on no significant

e↵ect of TXA for TBI.

! Generalize the ATE from CRASH-225 to the Traumabase patients.
25Shakur-Still et al., “E↵ects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with

significant haemorrhage (CRASH-2): A randomised, placebo-controlled trial”, 2009.
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Back to our Traumabase® and medical question...

Is there an e↵ect of tranexamic acid (TXA) on mortality among patients

with severe brain injuries (TBI)?

MI_AIPSW

MI_CW

MI_G−formula

MI_IPSW

MIA_AIPSW

MIA_G−formula

MIA_IPSW

MI_AIPW

MIA_AIPW

Difference_in_condmeans

Difference_in_means

−0.2 −0.1 0.0 0.1
ATE

Generalization Observational data 
(17+21 variables)

RCT − CRASH−2 
(5+5 variables)

Generalized ATE 
using MI 

S-ign. + MAR 
assumpt.

Generalized ATE 
using MIA 

CIS assumpt.

Observational ATE

RCT ATE

Doubly robust

Re-weighting
(IPSW)

G-formula
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General conclusion

Goal

Proposal of theoretical and methodological elements to reduce the

gap between classical statistical analysis frameworks and real world

data and application of the proposed solutions into practice.

Contributions

Study of the impact of missing values in causal analyses.

. Classification into classical and novel modeling of missing

values in causal identifiability.

. Estimation on incomplete and heterogeneous observational

data.

. Generalization from experimental data to target populations

described by observational data.

. Implementation and application on critical care manage-

ment data.
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R-miss-tastic – A unified platform on missing values methods

Despite the large range of standard references for missing values problems, it is

not (always) obvious where to go with a specific problem at hand.

A broad and accessible overview is given with the R-miss-tastic platform25.

Joint work with Aude Sportisse, Nathalie Vialaneix, Julie Josse, Nick Tierney and

many other contributors.

25Mayer et al., “R-miss-tastic: a unified platform for missing values methods and workflows”, 2019.
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Publications

Published articles and articles under review
Presented today

. Doubly robust treatment e↵ect estimation with missing attributes, I. Mayer, E.

Sverdrup, J.-D. Moyer, T. Gauss, S. Wager, J. Josse, Annals of Applied Statistics,

2020.

. Causal inference methods for combining experimental and observational studies: a

review, B. Colnet, I. Mayer, G. Chen, A. Dieng, R. Li, G. Varoquaux, J.-P. Vert, J.

Josse, S. Yang, under review at Statistical Science.

. Generalizing treatment e↵ects with incomplete covariates, I. Mayer, J. Josse,

Traumabase Group, under review at Biometrical Journal.

. R-miss-tastic: a unified platform for missing values methods and workflows, I. Mayer,

A. Sportisse, J. Josse, N. Tierney, N. Vialaneix, under review at R-Journal.

. Machine Learning augmented causal inference to estimate the treatment e↵ect of

Tranexamic Acid in Traumatic Brain Injury, I. Mayer, J.-D. Moyer, J.-P. Nadal, J.

Josse, T. Gauss, and others, under review at BMC Research Methodology.

Ongoing works and technical reports
. MissDeepCausal: causal inference from incomplete data using deep latent variable models, with

J.-P. Vert, J. Josse.
. CRAN Task View on Causal Inference, with P. Zhao, J. Josse.
. Survival causal inference, with P. Roussel, J. Josse, B. Sebastien.
. HCQ with or without azithromycin and in-hospital mortality or discharge in patients hospitalized

for COVID-19 infection: a cohort study of 4,642 in-patients in France, with E. Sbidian, E.
Audureau, J. Josse, G. Lemaitre, M. Bernaux, A. Gramfort, G. Varoquaux, and others.
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Perspectives

From a methodological point of view

. Propose sensitivity analyses to assess the di↵erent identifiability

assumptions with missing values and quantify the bias of di↵erent

estimators.

. Generalizing ATE with di↵erent missingness mechanisms in the

RCT and the observational data.

. Extend the generalization results to target populations defined

by combinations of populations represented by di↵erent observa-

tional cohorts.

From an applied/medical point of view

. Study treatment e↵ect heterogeneity in TBI patients and com-

pare with known patho-physiological heterogeneities.

. Provide easy-to-use tools (such as R package) to allow for direct

deployment by practitioners.

! Towards translational (personalized) medicine. 48/49
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