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DOUBLY ROBUST TREATMENT EFFECT ESTIMATION
WITH MISSING ATTRIBUTES

By Imke Mayer¶, Stefan Wager†† Tobias Gauss‡‡ Jean-Denis
Moyer‡‡ and Julie Josse∗∗

École des Hautes Études en Sciences Sociales¶, École Polytechnique¶∗∗,
INRIA Saclay∗∗, Stanford University†† and Beaujon Hospital‡‡

Missing attributes are ubiquitous in causal inference, as they are
in most applied statistical work. In this paper, we consider various
sets of assumptions under which causal inference is possible despite
missing attributes and discuss corresponding approaches to average
treatment effect estimation, including generalized propensity score
methods and multiple imputation. Across an extensive simulation
study, we show that no single method systematically out-performs
others. We find, however, that doubly robust modifications of stan-
dard methods for average treatment effect estimation with missing
data repeatedly perform better than their non-doubly robust base-
lines; for example, doubly robust generalized propensity score meth-
ods beat inverse-weighting with the generalized propensity score. This
finding is reinforced in an analysis of an observations study on the
effect on mortality of tranexamic acid administration among patients
with traumatic brain injury in the context of critical care manage-
ment. Here, doubly robust estimators recover confidence intervals
that are consistent with evidence from randomized trials, whereas
non-doubly robust estimators do not.

1. Introduction.

1.1. Hemorrhagic shock and traumatic brain injury in critical care man-
agement. Our work is motivated by a prospective observational study of
the causal effect of tranexamic acid (TA), an antifibrinolytic agent that lim-
its excessive bleeding, on mortality among traumatic brain injury patients
during their stay at the hospital (from admission to ICU and regular care
units). The beneficial effect of TA on mortality has been shown in a large
randomized placebo-controlled study (Shakur et al., 2010). Our interest in
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deceased no yes
TA not administered 2,167 (68%) 399 (13%)

TA administered 374 (12%) 228 (7%)
Table 1

Occurrence and frequency table for traumatic brain injury patients (total number: 3,168).

developing observational study methods for assessing the effect of TA is
twofold: In the long run, observational studies will be able to incorporate
data on a larger and more diverse set of patients, thus allowing us to get a
better understanding of when and for whom TA works; and treatment effect
estimation on such observational studies can serve as a precursor for future
randomized placebo-controlled studies, namely by helping defining the most
interesting or promising target population beforehand and the associated
inclusion rules.

Our study is built on top of the Traumabase® database, which currently
indexes around 20,000 major trauma patients.1 For each patient, 244 mea-
surements are collected both before and during the hospital stay, including
both quantitative and categorical variables. As shown in Table 1, TA was
administered to roughly 19% of traumatic brain injury patients, and 20%
died before the end of their hospital stay. We also see that mortality was
much higher among patients who received TA than those who did not (38%
vs. 16%). This apparent reversal of the expected causal effect is a standard
example of confounding bias (also known as Simpson’s paradox): The effect
arises because patients who appeared to be in more severe state were more
likely to be administered TA and were also more likely to die with or without
the treatment.

The goal of our observational study design is to use a subset of 37 auxil-
iary covariates collected by the Traumabase group to control for confounding
and identify the causal effect of TA on mortality. This “unconfoundedness”
or “selection on observables” strategy is justified if the treatment of interest
(i.e., administration of TA) is as good as random after conditioning on co-
variates (Imbens and Rubin, 2015; Rosenbaum and Rubin, 1983). In general,
such an unconfoundedness assumption cannot be validated from data, and
needs to be built into the observational study design.

In order to make unconfoundedness as plausible as possible, the Traum-
abase group chose which covariates among the total of 244 collected covari-
ates to incorporate in our study by soliciting feedback from a number ex-

1Major trauma is defined as any injury that potentially causes prolonged disability or
death and it is a public health challenge and a major source of mortality and handicap
around the world (Hay et al., 2017).
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Fig 1: Percentage of missing values for a subset of variables relevant for trau-
matic brain injury. Different encodings of missing values: NA (not available),
not informed, not made, not applicable, impossible.

perts using the Delphi method (Dalkey and Helmer, 1963; Jones and Hunter,
1995). The focus of the Delphi survey was in understanding which factors
were important for understanding health trajectories of major trauma pa-
tients. Because the decision whether or not to administer TA was performed
by health professionals, it is likely that this same set of variables is also
relevant to understanding which patients were more likely than others to be
selected for treatment. A detailed list of the confounders and predictors of
the outcome, in-ICU mortality, that were chosen via the Delphi method is
given in the Supplementary material.

As discussed further in the following section, the statistics of treatment
effect estimation under unconfoundedness is by now well understood, with
literature covering a range of topics from identification (Imbens and Rubin,
2015; Rosenbaum and Rubin, 1983) and simple weighted estimators (Abadie
and Imbens, 2016; Rosenbaum and Rubin, 1984; Zubizarreta, 2012) to semi-
parametrically efficient estimation in potentially high-dimensional settings
(Athey, Imbens and Wager, 2018; Chernozhukov et al., 2018; Robins, Rot-
nitzky and Zhao, 1994; Van der Laan and Rose, 2011) and optimal treat-
ment personalization (Athey and Wager, 2017; Kitagawa and Tetenov, 2018;
Luedtke and Van Der Laan, 2016; Zhao et al., 2012).

In the case of the Traumabase dataset, however, we have an additional
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complication whereby, in Figure 1, many of the variables have missing en-
tries. Some of the missingness is presumably due to non-informative miss-
ingness, e.g., medical staff simply forgetting to log some numbers, but in
other cases the missingness is clearly informative; and in fact the analysts
compiling the dataset used many different phrases to describe missing mea-
surements, ranging from “not made” and “not applicable” to “impossible”.
The last denomination arises, for example, in the case of blood pressure
measurements for patients in cardiac arrest or with dismemberment, as first
responders simply cannot measure blood pressure for patients suffering from
one of these two conditions. Meanwhile, variables indicating the response to
a certain drug, such as the pupil contraction after the administration of
a saline solution, systematically take on the value “not applicable” if the
treatment has not been administered (the latter is informed in a separate
variable).

There are a handful of popular strategies for working with missing val-
ues in the context of treatment effect estimation under unconfoundedness,
ranging from generalized propensity score methods (D’Agostino and Ru-
bin, 2000; Rosenbaum and Rubin, 1984) to multiple imputation (Little and
Rubin, 2002; Rubin, 1976, 1987). However, the methodology for treatment
effect estimation with missingness is not as thoroughly fleshed out as cor-
responding methods without missing data. In particular, although doubly
robust and semiparametrically efficient methods have shown considerable
promise in cases without missingness (Athey, Imbens and Wager, 2018; Cher-
nozhukov et al., 2018; Robins, Rotnitzky and Zhao, 1994; Van der Laan and
Rose, 2011), we are not aware of a study of doubly robust treatment effect
methods with missing covariates.

In this paper, we discuss natural doubly robust generalizations of several
popular methods for treatment effect estimation with missing covariates, and
conduct an extensive simulation comparison. There is considerable variabil-
ity in which methods perform best in our experiments: Sometimes methods
that start from generalized propensity scores do better while other times
multiple imputation wins; sometimes parametric methods fit via the EM al-
gorithm (Dempster, Laird and Rubin, 1977) are better whereas other times
non-parametric estimators do better. However, we systematically find our
doubly robust modifications of standard methods to outperform their base-
lines.

Finally, in the case of the Traumabase study, all doubly robust estimators
give confidence intervals that cover 0, indicating that we need to collect more
data before we can use the observational study to guide clinical choices
around administration of TA in the context of traumatic brain injury. In
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contrast, all baseline methods result in confidence intervals that do not cover
0, and find significantly harmful effects of TA on mortality. It thus appears
that using doubly robust estimators is needed to eliminate the selection bias
seen in Table 1.

2. Methods for Complete Data. As a preliminary to our discussion
on how to estimate causal effects with missing attributes, we first briefly
review methods that are widely used in the easier case without missing-
ness. Suppose we observe n independent and identically distributed samples
(Xi, Yi, Wi) ∈ Rp×R×{0, 1} where Xi is a vector of attributes, Yi is an out-
come of interest, and Wi denotes treatment assignment. We define causal
effects via the Neyman-Rubin potential outcomes model under the stable
unit treatment value assumption (Imbens and Rubin, 2015). We posit po-
tential outcomes {Yi(0), Yi(1)} corresponding to the outcome the i-th sam-
ple would have experienced had they been assigned treatment Wi = 0 or
1 respectively, such that Yi = Yi(Wi). The average treatment effect is then
defined as

τ , E[Yi(1)− Yi(0)].

In order to identify τ , we further assume unconfoundedness, i.e., that treat-
ment assignment is as good as random conditionally on the attributes Xi

(Rosenbaum and Rubin, 1983),

(1) {Yi(0), Yi(1)} ⊥⊥Wi

∣∣Xi,

and overlap, i.e., that the propensity score e(·) is bounded away from 0 and
1,

(2) e(x) , P
[
Wi = 1

∣∣Xi = x
]
, η < e(x) < 1− η,

for all x ∈ Rp and some η > 0.
In the case without any missingness in the attributes Xi, the problem of

average treatment effect estimation in the above setting is well understood.
Several popular and consistent approaches to estimating τ are built around
the propensity score. The analyst first estimates the propensity score e(x)
in (2), and then estimates τ either via inverse-propensity weighting (IPW)

(3) τ̂IPW ,
1
n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
,

or by matching treated and control observations with similar values of the
propensity score (Abadie and Imbens, 2016; Rosenbaum and Rubin, 1984;
Zubizarreta, 2012).
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However, when the propensity score is somewhat difficult to estimate,
methods that only rely on the propensity score are in general dominated by
bias due to estimation error in e(·), and methods that also model the out-
comes Yi can attain a better sample complexity; see Athey, Imbens and Wa-
ger (2018), Chernozhukov et al. (2018) and Van der Laan and Rose (2011) for
references and recent results. One particularly successful approach to com-
bining these two approaches to modeling is via augmented inverse-propensity
weighting (AIPW) (Robins, Rotnitzky and Zhao, 1994),

τ̂AIPW ,
1
n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

+ Wi

ê(Xi)
(
Yi − µ̂(1)(Xi)

)
− (1−Wi)

1− ê(Xi)
(
Yi − µ̂(0)(Xi)

))
,

(4)

where µ(w)(x) , E
[
Y
∣∣Xi = x, Wi = w

]
and µ̂(w)(x) is an estimate thereof.

A key fact about doubly robust estimators as in (4) is that τ̂AIPW can be√
n-consistent for τ and asymptotically Gaussian even in a non-parametric

setting where µ̂(w)(·) and ê(·) are estimated, for instance using generic ma-
chine learning methods, at slower non-parametric rates (Farrell, 2015). We
use “cross-fitting”, whereby we do not use the i-th datapoint itself for mak-
ing the predictions µ̂(w)(Xi) and ê(Xi) (Chernozhukov et al., 2018; Van der
Laan and Rose, 2011). Methods based on inverse-weighting as in (3) can also
sometimes have good asymptotic performance, but these results are gener-
ally more fragile and require considerably stronger regularity conditions than
corresponding AIPW results (Hirano, Imbens and Ridder, 2003).

3. Treatment Effect Estimation with Missing Attributes. In this
paper, we are interested in a more difficult variant of the above setting
where the analyst cannot always observe the full attribute vector. Rather,
we assume that there is a “mask” Ri ∈ {1, NA}p such that the analyst
observes X∗i , Ri � Xi ∈ {R ∪NA}p. Here, � denotes an element-wise
product, such that X∗ij = Xij if Rij = 1 and X∗ij = NA if Rij = NA.

In current empirical practice, there are several approaches to treatment
effect estimation with missing attributes; but the literature studying this
problem is rather scarce and most such approaches focus on IPW-form esti-
mators as in (3) (Rosenbaum and Rubin, 1984; D’Agostino and Rubin, 2000;
Seaman and White, 2014; Mattei, 2009; Leyrat et al., 2019).

The main contributions of this paper consist in (1) a dyadic classification
of possible approaches to treatment effect estimation with missing attributes
—the first class relying on a variant of the unconfoundedness assumption
while the second uses the classical missing values mechanism taxonomy—(2)
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in the proposal of two new estimators in the first class—a parametric and
nonparametric estimator, both in an IPW and an AIPW form—(3) the ex-
tension of previously introduced IPW estimators to the AIPW form in the
second class and (4) an extensive comparison of these estimators.As pre-
liminaries, below we review some paradigms for treatment effect estimation
with missing attributes.

3.1. Unconfoundedness despite missingness. Perhaps the simplest way
to work with missing attributes is to assume that the missingness mechanism
does not break unconfoundedness (1), i.e., that (Rosenbaum and Rubin,
1984)

(5) {Yi(0), Yi(1)} ⊥⊥Wi

∣∣X∗i .
In this setting, D’Agostino and Rubin (2000) show that matching on the
generalized propensity score

(6) e∗(x∗) , P
[
Wi = 1

∣∣X∗i = x∗
]

is consistent for τ . In general, the simplest way to verify (5) is to pair (1)
together with one of the two assumptions below (Blake et al., 2019; Mattei,
2009) 

CIT: Wi ⊥⊥ Xi |X∗i , Ri
or
CIO: Yi(w) ⊥⊥ Xi |X∗i , Ri for w ∈ {0, 1},

(7)

where CIT and CIO stand for conditional independence of treatment and
conditional independence of outcome respectively. Given these assumptions,
(5) can be directly derived from the causal graphs shown in Figure 2 (Pearl,
1995; Richardson and Robins, 2013).

We note that fitting (6) may appear difficult from the perspective of clas-
sical parametric statistics; e.g., in order to run logistic regression, one needs
to fit a separate parameter vector for each mask r. However, many modern
machine learning methods, including tree ensembles and neural networks,
can readily handle missing data and enable (6) to be fit directly.

3.2. Missing values mechanisms. Another choice is to make assumptions
about the missingness mechanism Ri. The most popular approach is to take
the missingness mechanism to be random (MAR) (Little and Rubin, 2002;
Rubin, 1976), i.e., for each possible mask r ∈ {1, NA}p,

(8) pr(Ri = r
∣∣Xi = x, Wi, Yi) = pr(Ri = r

∣∣ (Xi)r = xr, Wi, Yi),
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Fig 2: Causal graph depicting the assumptions (7).

(a) CIT

X X∗ R

W w Y (w)

(b) CIO

X X∗ R

W w Y (w)

where Xr is the subset of entries of X indexed by {j : rj = 1}. Under
these assumptions, multiple imputation (Rubin, 1987; van Buuren, 2018) is
a popular approach to treatment effect estimation (Qu and Lipkovich, 2009;
Robins and Wang, 2000; Rubin, 1978, 2004; Seaman and White, 2014). Un-
der the condition that this imputation is “proper”, i.e., that the missing
attributes are simulated from the correct conditional distribution, and a
linear-logistic model for the outcome and treatment this method is con-
sistent for IPW estimators (Seaman and White, 2014). Note that multiple
imputation does not rely on the assumption (5) or the generalized propensity
score, but it only requires the data to be MAR as in (8).

A stronger variant of the missing-at-random assumption (8) is to assume
missingness to be completely at random (MCAR),

pr(Ri = r
∣∣Xi, Wi, Yi) = pr(Ri = r),

or equivalently
Ri ⊥⊥ {Xi, Yi, Wi} .

Under this assumption, further methods become available. First, we can
consistently estimate τ using only the subset of the data with no missingness,
i.e., Xi = X∗i . Of course, using only a subset of the data results in a loss
of efficiency; however, this approach is simple and consistent. We emphasize
that complete case analysis is not valid under the weaker assumption (8); in
that case, ignoring observations with missingness will result in bias (Little
and Rubin, 2002).

Another algorithm that has been studied under the MCAR assumption
is based on matrix completion (Kallus, Mao and Udell, 2018). Write X and
X∗ for the matrices with rows Xi and X∗i respectively. Then, assuming
that X is a potentially noisy realization of a low rank matrix U and that
unconfoundedness (1) holds with Xi replaced by Ui, we can approximate
U from X∗ using methods for low-rank matrix factorization (e.g., Candes
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and Plan, 2010), and then apply complete-data methods on the recovered
Ûi. In cases where both MCAR and the low-rank assumption hold, matrix
factorization may be more efficient than complete case analysis and simpler
than multiple imputation.

3.3. Discussion: The Traumabase study. In light of the previous discus-
sion on the underlying (additional) assumptions required in the case of miss-
ing attributes, we argue that the Traumabase data is more likely to fall under
the unconfoundedness despite missingness assumption from Section 3.1 than
the MAR assumption from Section 3.2. Indeed, the administration of TA in
the context of major trauma generally takes place under time pressure—the
more blood a patient looses, the more complications can occur—and the
medical staff cannot wait too long to collect a lot of information before de-
ciding on the treatment. Therefore, if a value such as the evolution of the
shock index level between arrival of the MICU2 and arrival at the ICU, is not
available because at least one measurement is missing—for instance, due to
transmission problems –, the decision on the treatment will not depend on
this feature. Another example could be information about the pre-hospital
hemoglobin level: if the patient is in a severe state and immediate measures
(such as resuscitation) are prioritized, then this measurement might not be
made, however the consequently missing value is informative in the sense
that it is due to the severe state of the patient, which might not necessarily
be recorded explicitly in other observed features. These examples point in fa-
vor of the unconfoundedness despite missingness assumption as they suggest
that the missing values are not only missing for the analyst but have already
been missing for the physician at the time of treatment administration.

On the contrary, the MAR assumption seems plausible only for a subset
of covariates. For instance, if the binary variable Cardiac.arrest.ph indicates
that the patient needed to be resuscitated, then this can explain the missing
values for the blood pressure and heart rate during pre-hospital phase. And
there are other incomplete variables such as the total quantity of volume
expanders used in pre-hospital phase for which the missing values depend
on several other recorded variables describing the need for volume expansion.

4. IPW and augmented IPW with Missing Attributes. The pre-
viously discussed assumptions lead to two families of methods for treatment
effect estimation with missing attributes. We now propose two IPW and
AIPW estimators in the family derived from the unconfoundedness despite

2Mobile intensive care unit, enhanced medical care team that takes care of the patient
at the scene of the accident.



10 I. MAYER ET AL.

missingness assumption (Section 3.1). In the other family that relies on clas-
sical assumptions on the missingness mechanism (Section 3.2), we extend
the existing multiple imputation IPW estimator to a doubly robust AIPW
version. For the former family, we only present details for the AIPW esti-
mators, their IPW counterparts can almost directly be read off the AIPW
formulation below.

4.1. Unconfoundedness despite missingness. Under assumption (5), the
generalization to incomplete attributes is direct. First, estimate the general-
ized propensity score e∗(x∗) from (6) and similarly the generalized outcome
model µ∗(w)(x∗), and then form the AIPW estimator

τ̂AIPW ∗ ,
1
n

n∑
i=1

(
µ̂∗(1)(X∗i )− µ̂∗(0)(X∗i )

+ Wi

ê∗(X∗i )
(
Yi − µ̂∗(1)(X∗i )

)
− (1−Wi)

1− ê∗(X∗i )
(
Yi − µ̂∗(0)(X∗i )

))
.

(9)

There are general results about AIPW that immediately guarantee that the
above estimator τ̂AIPW ∗ is

√
n-consistent and asymptotically normal around

τ provided ê∗(·) and µ̂∗(w)(·) converge at o(n−1/4) rate in root-mean squared
error given only weak regularity conditions (Chernozhukov et al., 2018).
Below, we consider both a parametric approach based on logistic regression,
and a non-parametric approach using random forests.

4.1.1. Nonparametric approach. The non-parametric task of learning e∗(x∗)
and µ∗(w)(x∗) is somewhat unusual, since the x∗ take values in the augmented
space {R ∪NA}p. However, this problem has received attention in the ma-
chine learning literature. For example, random forests (Breiman, 2001) can
handle semi-continuous variables therefore allowing for missing values in the
data. One solution that takes into account the missingness in tree models
is missing incorporated in attributes (MIA) (Twala, Jones and Hand, 2008;
Josse et al., 2019). It allows optimal splits along the observed variables.
Therefore, it selects patterns that are important for predicting the treat-
ment assignment (and also the outcome) instead of adjusting one model per
pattern as would be a naive approach to estimate (6). More formally, this
procedure estimates the following quantity (Bayes estimate):

E[V |X∗] =
∑

r∈{0,1}p

E[V |X∗, R = r]1R=r,
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where V stands either for the treatment assignment W or for the outcome Y .
In the following we will denote by τ̂MIA the resulting treatment effect esti-
mator, either its IPW or its AIPW formulation. Another, conceptually even
simpler approach for prediction with incomplete data is mean imputation
which is consistent, provided that one uses a learning algorithm with infinite
learning capacity (Josse et al., 2019). Both the MIA and mean imputation
strategy are valid for arbitrary missingness mechanisms, provided that (5)
holds, i.e., this method does not require the missing data to be MAR; and
in many applications it is likely that MAR does not hold, therefore this ap-
proach can be a suited alternative if (5) is more likely to hold than MAR.
The details of this approach are outlined in Procedure 13.4

Procedure 1: nonparametric AIPW with generalized propensity
score and generalized response surfaces.
This algorithm provides an estimation for the average treatment ef-
fect τ via random forests with MIA splitting rule, given incomplete
covariates X∗, observed treatment assignment W and outcome Y .
We assume unconfoundedness despite missingness (5).

1. Transform the given X∗ to X̃∗:
Option 1 Duplicate each variable X∗j with at least one miss-

ing observation. Replace the missing values with −∞ and
∞.

Option 2 For each variable X∗j with at least one missing ob-
servation, impute each missing value with the mean of
X∗j .

2. Train a random forest on (X̃∗,W ) to get an estimate for e∗.
3. Train two random forest on (X̃∗i:Wi=1, Yi:Wi=1) and on

(X̃∗i:Wi=, Yi:Wi=) to get estimates for µ∗(1) and µ∗(0).
4. Combine the predictions following (9) to obtain a doubly ro-

bust estimation τ̂ for τ .

4.1.2. Parametric approach. For the parametric approach, we build on
work by Jiang, Josse and Lavielle (2018) and Schafer (1997), assuming a
logistic and linear model for the generalized propensity score and outcome
respectively. These two models are estimated by maximum likelihood esti-

3Alternatively, steps 2-4 from Procedure 1 can be replaced with a causal forest approach
(Athey, Tibshirani and Wager, 2019).

4In this section, all procedures focus on AIPW estimation, the details for the IPW
estimators are given in the Supplementary material.
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mation, using the EM algorithm that allows to do valid inference on the
observed values (Dempster, Laird and Rubin, 1977). The exact description
of this parametric procedure for the AIPW estimator is outlined in Proce-
dure 2. A limitation of this approach, as opposed to the previous one, is
that additionally to the unconfoundedness despite missingness assumption
it makes an assumption on the missingness mechanism, namely (8). The
latter is required only for valid estimation of e∗(x∗) and µ∗(w)(x∗) through
the EM algorithm, while it is not necessary for identification of the causal
effect τ , as explained above. The resulting IPW and AIPW estimators will
be denoted as τ̂EM in the remainder of this article.

Procedure 2: parametric AIPW with generalized propensity score
and generalized response surfaces.
This algorithm provides an estimation for the average treatment ef-
fect τ via logistic and linear regressions, given incomplete covariates
X∗, observed treatment assignment W and outcome Y . We assume
unconfoundedness despite missingness (5) and MAR (8).

1. Fit a logistic model on (W,X∗) using the stochastic approxi-
mation EM algorithm to obtain predictions for the generalized
propensity score e∗(X∗i ).

2. Fit two separate linear models on (Yi:Wi=1, X
∗
i:Wi=1) and on

(Yi:Wi=1, X
∗
i:Wi=1) respectively via an EM algorithm to obtain

predictions for µ∗(1)(X∗i ) and µ∗(0)(X∗i ) respectively.
3. Combine the predictions following (9) to obtain a doubly ro-

bust estimation of τ .

4.2. Standard unconfoundedness and missingness mechanisms. As dis-
cussed in Section 3.2, multiple imputation is a solution if the missingness
mechanism is MAR as defined by (8). We propose to augment the multiple
imputation approach to obtain an AIPW estimator: we proceed similarly to
Mattei (2009), i.e., we do multiple imputation using fully conditional equa-
tion (FCE) where we draw missing values from a joint distribution which
is implicitly defined by the set of conditional distributions, proper impu-
tation is ensured using a Bootstrap approach to reflect the sampling vari-
ability of the imputation models parameters. Then, on each imputed data
set m ∈ {1, . . . , M}, we compute an AIPW estimate τ̂ (m)

AIPW given in (4)
instead of the IPW estimate τ̂ (m)

IPW given in (3). This approach is outlined in
Procedure 3.

Another recent solution is based on matrix factorization (Kallus, Mao
and Udell, 2018) as outlined in Procedure 4. Note that, unlike with multiple
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imputation, we only impute each datapoint once and consistency guarantees
are only given under MCAR.

Procedure 3: AIPW with multiple imputation.
This algorithm provides an estimation for the average treatment ef-
fect τ using multiple imputation, given incomplete covariates X∗,
observed treatment assignment W and outcome Y . We assume un-
confoundedness (1) and MAR (8).

1. Choose number of imputations M , for instance M = 20.
Choose an imputation method, for instance mice. Impute the
initial data X∗ using an M times with the chosen imputation
method to obtain M complete data matrices (X(1), . . . , X(M)).

2. For every imputed data matrix X(m), m ∈ {1, . . . ,M}:
Option 1 Nonparametric regression.

(a) Train a random forest on (X(m),W ) to get an esti-
mate for e.

(b) Train two random forest on (X(m)
i:Wi=1, Yi:Wi=1) and on

(X(m)
i:Wi=, Yi:Wi=) to get estimates for µ(1) and µ(0).

(c) Combine the predictions following (4) to obtain a
doubly robust estimation τ̂ for τ .

Option 2 Parametric regression (we additionally assume
logistic-linear model specification for (e, µ(0), µ(1))).
(a) Fit a logistic model to obtain predictions for the

propensity score e(X(m)
i )

(b) Fit two separate linear models on (Yi:Wi=1, X
(m)
i:Wi=1)

and on (Yi:Wi=1, X
(m)
i:Wi=1) respectively to obtain pre-

dictions for µ(1)(X
(m)
i ) and µ(0)(X

(m)
i ) respectively.

(c) Combine the predictions following (4) to obtain a
doubly robust estimation τ̂ (m) for τ .

3. Aggregate the M estimations (τ̂ (1), . . . , τ̂ (M)): τ̂ =
1
M

∑M
m=1 τ̂

(m).

5. Simulation study. We assess the performance of the previously in-
troduced treatment effect estimators in different scenarios, modifying the
data generating process, the confounders’ relationship structure, the uncon-
foundedness hypothesis, the missingness mechanism, the percentage of miss-
ing values, the sample size. The comparisons are twofold: (1) comparisons
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between IPW-baseline and AIPW-type estimators, (2) comparisons w.r.t.
the assumptions on the underlying unconfoundedness and the missingness
mechanism. Note that in all simulations, we only consider the well-specified
case, i.e., we do not study the (parametric) estimators’ performances in case
of model mis-specification. More specifically, e(x) = σ(α0 + αTx + εe) and
µ(w)(x) = β0 + βTx + wτ + εµ, where εe and εµ are zero mean and inde-
pendent noise terms. All simulations are implemented in R (R Core Team,
2018).5

5.1. Methods overview. We compare our approaches τ̂EM and τ̂MIA, de-
noted saem and mia.grf in the experiments, to the following methods, where
we summarize their assumptions in Table 2:

• mice: Procedure 3 (and its IPW analogue detailed in the Supplemen-
tary material) with Option 2; we use the R package mice (van Buuren
and Groothuis-Oudshoorn, 2011) and default options.

• mf : Procedure 4 (and its IPW analogue detailed in the Supplementary
material) with Option 2; we adapt the implementation6 of Kallus, Mao
and Udell (2018) based on the R package softImpute (Hastie and
Mazumder, 2015).

• mean.loglin: Imputation by the mean for the missing values and esti-
mate e with logistic regression on the mean imputed covariates and
the two µ(w) with two separate linear regressions.

• mean.grf : Procedure 1 with Option 2.

For the parametric τ̂EM we use the R package misaem (Jiang, 2019); for
the nonparametric τ̂MIA we implemented our approach in the R package
GRF (Athey, Tibshirani and Wager, 2019). We grow forests with missingness
via the the MIA method; then, the estimator (9) is implemented in the
command average treatment effect. Note that it is common to add the
binary mask R to the initial or imputed data matrix X for estimation or
prediction and it is admitted that this addition can sometimes improve the
analysis and generally does not deteriorate the result. Hence, in this work
we only report results obtained by adding R.

In all cases, we consider inference using the bootstrap (i.e., we bootstrap
the original data and repeat the whole process).

5The code for reproducing the experiments presented in this work is available online
at https://github.com/imkemayer/causal-inference-missing.

6For details on the implementation of this last method, see https://github.com/
udellgroup/causal_mf_code.

https://github.com/imkemayer/causal-inference-missing
https://github.com/udellgroup/causal_mf_code
https://github.com/udellgroup/causal_mf_code


ATE ESTIMATION WITH MISSING ATTRIBUTES 15

Confounders &
Covariates

Missingness Unconfoundedness Models for
(W, Y )

multiva-
riate

normal
general M(C)AR general (1) (5) logistic-

linear
non-

param.

saem 3 7 3 7 7 3 3 7

mia.grf 3 3 3 3 7 3 3 3

mice 3 3 3 7 3 3 3 (7)

mf 3 7 3 7
3

(on U) 7 3 (7)
mean.loglin 7 7 7 7 7 7 7 7

mean.grf 3 3 3 3 7 3 3 3

Table 2
Methods and their assumptions on the underlying data generating process. (3indicates
cases that can be handled by a method, whereas 7 marks cases where a method is not

applicable in theory; (7) indicates cases without theoretical guarantees but with heuristic
solutions.)

5.2. Data generation. We define different models for the generation of
the confounders, covariates, missing values, treatment assignment and out-
come.

5.2.1. Confounders and covariates.

Model 1: Multivariate normally distributed confounders. We generate nor-
mally distributed confounders Xi· = [Xi1 . . . Xip]T ∼ N (1,Σ), i ∈
{1, . . . , n}, for p = 10, where Σ = I−0.6×(I−1), X = [X1· . . . Xp·]T ∈ Rn×p.

Model 2: Latent classes model. We consider a Gaussian mixture model, i.e.,
we first generate class labels C from a multinomial distribution with three
categories. Then the confounders of observation i, Xi·, are sampled from the
corresponding class distribution, i.e., Xi· ∼ N (µ(ci),Σ(ci)) |Ci = ci.

Treatment and outcome are defined using the logistic-linear model in the
following way: we define logit(e∗(X∗i·)) = (α(Ci))TX∗i·. This allows to add an
additional interaction between treatment and the latent class. Analogously,
the outcome is defined as Yi ∼ N ((β(Ci))TX∗i· + τWi, σ

2).

Model 3: Hierarchical data-generating model. An alternative to defining a
Gaussian mixture model, is to use a simplified shallow version of a deep
latent variable model (DLVM, Kingma and Welling (2014)): the codes C
are sampled from a normal distribution Nd(0, 1). Covariates Xi are then
sampled from Np(µ(c),Σ(c)) |Ci = c, where

(µ(c),Σ(c)) = (V tanh(Wc+ a) + b, exp(γT (Wc+ a) + δ)Ip),
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and the weights in V ∈ Rp×5 and W ∈ R5×d are respectively sampled from
a standard normal and a uniform distribution (and similarly for the offsets
a and b). We fix d = 3.
Model 4: Low rank matrix factorization. We adapt the simulation frame-
work from Kallus, Mao and Udell (2018) by generating Ui· = [Ui1 . . . Uid]T ∼
N (0, Id) and defining X = UV T for some fixed matrix V ∈ Rp×d, with d = 3.

5.2.2. Missing values. We generate missing values either under MCAR
(i.e., P(Rij = 1) = 1− B(η) such that on average we have ηnp missing val-
ues) or as informative missing values (missing values in X·,1:5 are generated
depending on the quantiles of X·,1:5 such that there are about ηnp/2 missing
values). In the results presented here we fix η = 0.3.

5.2.3. Treatment assignment and outcome. For models 1,3 and 4, treat-
ment assignment and outcome are defined under either of the unconfound-
edness assumptions.
Unconfoundedness despite missingness. Let X∗ = R�X+(1−R)�0. We
define logit(e∗(X∗i·)) = α0 + αTX∗i·. Analogously, the outcome is defined as
Yi ∼ N (β0 + βTX∗i· + τWi, σ

2).
Standard unconfoundedness. We define logit(e(Xi·)) = α0 + αTXi·. Analo-
gously, the outcome is defined as Yi ∼ N (β0 + βTXi· + τWi, σ

2).
For model 2, treatment assignment and outcome are defined under uncon-

foundedness on the latent factors U as follows: logit(e(Ui·)) = α0 + αTUi·.
Analogously, the outcome is defined as Yi ∼ N (β0 + βTUi· + τWi, σ

2)
We refer to the Supplementary material for details on how to simulate

treatment and outcome under assumption (5) (or rather (1) and (7)).

5.3. Results. We report the estimations for a fixed average treatment
effect using the previously described estimation methods. All figures in this
study are generated from 100 simulations for sample sizes n ∈ {100, 500, 1000, 5000},
we fix the proportion of missing values at 30% throughout all experiments;
and the true treatment effect τ is reported as black solid line. The standard
unconfoundedness setting corresponds to assumption (1), while unconfound-
edness despite missingness corresponds to (5).

5.4. Take-home message from the simulation study. The results from
this first simulation study can be summarized in several general observations:

• Augmented IPW outperform their IPW equivalents throughout all sce-
narios (both in terms of variability and of bias), this behavior is anal-
ogous to the behavior in the well understood complete data setting.
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• All methods perform well if their assumptions on the underlying data
generating process are met (see Table 2).

• For multiple imputation (mice) there is a small remaining bias, even
for large sample sizes. In some cases, when the assumptions for this
method are met, based on the theorem from Seaman and White (2014)
on multiple imputation with M =∞ imputations, it is expected that
an increase of the number of imputations should decrease this remain-
ing bias in these cases.

• The tree-based estimation, using the MIA criterion (mia.grf ) or mean
imputation (mean.grf ), generally performs at least as good as multiple
imputation but yields unbiased results if “unconfoundedness despite
missingness” (5) holds.

• Mean imputation and concatenation of the imputed data with the
mask, followed by logistic regression for W and linear regression for Y
(mean.loglin) leads to unbiased estimates, provided that (5) holds, in
many scenario even when the models are misspecified, however this is
true only when adding the mask R to the regression models. Otherwise
this approach is biased as soon as (5) is violated, and in this case it is
outperformed by competing methods.

• The EM-based estimator (saem) performs well under correct specifi-
cation (multivariate Gaussian confounders, logistic treatment assign-
ment, linear outcome, M(C)AR missing data mechanism, (5) satisfied)
and adding the mask to the initial data matrix yields unbiased esti-
mates even if the missing data mechanism is not ignorable. It fails
however in the cases where the data is not i.i.d. Gaussian.

For a more detailed discussion of the simulation results, we refer to the
Supplementary material.

6. Application on observational critical care management data.
As announced in the introduction we apply our methods to clinical data from
a French observational database on major trauma patients. The medical
question we aim to answer is whether administrating the drug TA has an
effect on in-ICU mortality for patients with traumatic brain injury.

6.1. Data and causal DAG. Out of the 20,000 currently available patient
records we consider a subset of 7,240 observations that have been validated
by the medical expert team after a first pre-treatment of a subset of 7,495
observations available at the beginning of this study. The pre-treatment
consisted in identifying outliers clearly due to erroneous inputs and recoding
missing values that are not really missing (for instance the variable informing
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previous pregnancies is evidently consistently missing, or ideally set to false,
for male patients, etc.)7. Out of these 7,240 patients, 3,168 are identified
as having a traumatic brain injury (defined by the medical expert team as
either the presence of a brain lesion visible on the first computed tomography
(CT) scan—which is generally taken within the first three hours after the
accident—or as a head AIS score8 greater or equal 2).

The treatment of interest, TA, is an antifibrinolytic agent limiting exces-
sive bleeding and it is currently used in patients suspected of developing an
hemorrhagic shock, a state in which the body is no longer able to provide
vital organs with sufficient quantities of dioxygen to sustain them. The av-
erage cost of a dose of TA lies below 10€ and the drug is generally available
immediately after the arrival of the medical first responders team at the
place of the accident. It is now recommended to administer this drug to
patients at risk of developing an hemorrhagic shock.

In order to clarify the previously raised causal question given the data, we
first establish a causal graph in order to summarize the a priori on existing
confounding and to highlight the causal question, as suggested, for instance,
by Lederer et al. (2019); Blake et al. (2019). The causal graph in Figure 7
is the result of a two-step Delphi procedure in which six anesthetists and
resuscitators specialized in critical care first selected covariates related to
either treatment or outcome or both and second classified these covariates
into confounders and predictors of only treatment or outcome. The absence
of an exact timestamp for the drug administration is compensated by the
fact that it is always given within the first three hours from the accident and
that the treatment does not have an immediate effect on variables such as
blood pressure, hemoglobin level or the Glasgow Coma Scale (GCS) which
are measured at various moments within the first three hours.

From this graph it becomes clear as well that a method that incorporates
a model of the outcome as a function of the identified potential predictors
(red and blue vertices in the graph) might achieve more precise results than
a method that uses the observed outcome directly. The large number of
predictors of the outcome is due both to the medical complexity of traumatic
brain injury and to the ambiguous treatment target: the assignment is made
in the context of hemorrhagic shock but recently there is some evidence that

7The code for pre-treatment and for estimating the treatment effect on this data are
available at https://github.com/imkemayer/causal-inference-missing.

8The head Abbreviated Injury Score indicates, on a scale from one to six, the severity of
the most severe observed brain lesion. This score is defined in the context of the Abbrevi-
ated Injury Scale proposed by the American Association for Automotive Medicine. See the
Supplementary material or https://www.aaam.org/abbreviated-injury-scale-ais/ for
more information.

https://github.com/imkemayer/causal-inference-missing
https://www.aaam.org/abbreviated-injury-scale-ais/
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there might also be a beneficial effect in the context of traumatic brain injury
(Hijazi et al., 2015).

6.2. Results. First, we recall the estimand we aim at estimating in this
context: we are interested in the effect of the treatment on mortality among
traumatic brain injury patients (indicated by the binary variable XTBI),
more formally:

(10) τTBI = E[Y (1)− Y (0)|XTBI = 1]

When adjusting for confounding using the identified confounders (pink
nodes on the graph in Figure 7), using additional predictors for the outcome
model (blue nodes on the graph in Figure 7), we obtain the following esti-
mations in Figure 8 of the direct causal effect of TA on in-ICU mortality
among traumatic brain injury patients.

Unlike the simulations of the previous paragraph, the real-world medical
data is more complicated and some concessions have to be made to apply
the previously discussed method. For instance, due to an important number
of outliers in the variable Medcare.time.ph that are related with inconsistent
units of the recorded values and with patient transfers from one hospital to
another, we chose to drop this variable in our analyses since, according to
the practitioners, its predictive power does not outweigh the potential issues
related to inconsistent recording of this variable.

Note that apart from the issue with the variable Medcare.time.ph, the
estimation via random forest and MIA does not require substantial pre-
processing of the data and is therefore straightforward, once the MIA re-
coding and the random forest are implemented. A remaining issue might
consist in the overlap assumption which is generally difficult to assess in
most medical applications and which might be slightly violated due in part
to the heterogeneity of patient profiles. A solution to handle such weak over-
lap is the use of overlap weights (Li, Morgan and Zaslavsky, 2018) and we
give the results using this alternative to inverse propensity weights in the
Supplementary material.

Here, we only consider three pairs of methods: mia.grf and mice. We drop
mean.grf since it performed similarly to mia.grf in the simulations. We also
do not test saem and mf since currently both these methods have not been
derived for heterogeneous data. A first observation on the results reported in

9Values on the x-axis are multiplied by 100 for better readability. The results can be
read as the difference in percentage points between mortality rate in the treated and
control groups.
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Figure 8 is the concordance of the different estimators: none of the AIPW-
type estimation strategies allows to reject the null hypothesis of no treatment
effect. As discussed in Section 3.3, it can be argued which family of methods
has more plausible underlying assumptions on the Traumabase data, but in
our opinion the unconfoundedness despite missingness—and therefore the
mia.grf estimations—are most suited for our specific application.

We notice a large difference between the IPW and the AIPW estimations.
The AIPW estimations seem more reasonable for two reasons: first, the
medical experts have noticed positive effects of TA for their TBI patients in
practice and a previous clinical trial, focussing on a slightly different patient
group, has also exhibited a certain benefit from the drug for patients with
TBI; second, for the AIPW estimators, we incorporate much more available
information, namely all identified features that are strongly related to the
outcome Y according to the expert panel (blue nodes on Figure 7). Finally,
all compared methods have similar empirical variances as can be observed on
the reported bootstrap confidence intervals in Figure 8. Finally, adding the
mask to the data matrix does not lead to major changes in the estimations,
therefore we only report results obtained when including the mask.

7. Discussion and perspectives.

7.1. Two families of treatment effect estimators handling missing attributes.
We have stressed the dyadic classification of previously exposed methods
that allow treatment effect estimation with missing attributes, both in the-
ory and in practice. The class of methods that relies on assumptions about
the missingness mechanisms for treatment effect identifiability is currently
often used, in combination with IPW-type estimators. We have also pro-
posed an AIPW formulation for the most popular method from the first
class, namely multiple imputation. However, methods of this first class have
limited applicability in practice, most importantly they exclude informative
missing data; this is a drawback of all developed methods in this class. The
second class, relying on the generalized propensity score and a different un-
confoundedness assumption, can handle arbitrary missingness mechanisms,
in particular the case where MAR does not hold, but to the best of our
knowledge, implementable and versatile methods in this class have not been
proposed so far.

In practice, if one can exclude smooth regression functions for the treat-
ment assignment and the outcome model, such as logistic and linear models,
and if the “unconfoundedness despite missingness” assumption is likely to
hold—for more details on this, we refer to Blake et al. (2019)—we advocate
our tree-based estimator τ̂MIA in its AIPW-form and its mean-imputation
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variant. If one is willing to make stronger (parametric) assumptions about
the structure of X and its relationship with W and Y , then our second
estimator τ̂EM can also be considered as an alternative.

7.2. Heterogeneous treatment effects and policy learning. Instead of es-
timating the average treatment effect τ , one could be interested in the
conditional average treatment effect function, defined as τ(x) = E[Y (1) −
Y (0)

∣∣X = x], for several reasons. For instance one might be interested in
estimating how treatment effects vary across sub-populations, or assessing
whether there is heterogeneity in the population w.r.t. a given treatment.
Such questions anticipate problems of learning decision rules that exploit
treatment effect heterogeneity (Wager and Athey, 2018).

In light of our medical application, heterogeneous treatment effect esti-
mation is of particular interest because of the known existing heterogene-
ity among traumatic brain injury patients in terms of clinical presentation,
pathophysiology and outcome. It is even more relevant since to this date
there is no general classification of patients with traumatic brain injury.
Hence a causal inference approach allowing classification w.r.t. treatment
heterogeneity for any given treatment is of interest for practitioners in crit-
ical care management.

7.3. Further identification strategies. Although the two lines of approaches
studied here for identification of average treatment effects with missing at-
tributes are the most prevalent in applied work, they are far from exhaus-
tive. For example, Yang, Wang and Ding (2017) consider a setting with
outcome-independent missingness, Yi ⊥⊥ Ri

∣∣ {Xi, Wi}, and find that τ can
be identified via a set of integral equations. We expect the area of meth-
ods development for causal inference with missing attributes to be a fruitful
research area for years to come.
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SUPPLEMENTARY MATERIAL

Supplementary material: Further simulation results and details
on the Traumabase
(https://imkemayer.com/papers/2019-10-23 DR-TreatmentEffect-WithMissingAttributes supp.pdf).
In this material we show additional simulation results, including different

https://imkemayer.com/papers/2019-10-23_DR-TreatmentEffect-WithMissingAttributes_supp.pdf
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simulation scenarios and estimators. Furthermore we provide a glossary for
the Traumabase variables and an additional analysis on this data set.
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École Polytechnique
91128 Palaiseau Cedex, France
E-mail: julie.josse@polytechnique.edu

mailto:imke.mayer@ehess.fr
mailto:julie.josse@polytechnique.edu


ATE ESTIMATION WITH MISSING ATTRIBUTES 25

S. Wager
Graduate School of Business
Stanford University
CA 94305, USA
E-mail: swager@stanford.edu

T. Gauss and J.-D. Moyer
Department of anesthesia and intensive care
Beaujon hospital, AP–HP
92110 Clichy, France
E-mail: tgauss@protonmail.com
E-mail: jean-denis.moyer@aphp.fr

mailto:swager@stanford.edu
mailto:tgauss@protonmail.com
mailto:jean-denis.moyer@aphp.fr


26 I. MAYER ET AL.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●●●●

● ●

●

●
●

●

●

●●●●

●
●

●

● ●

●

●

●

●
●
●

●

●●

●●●

●●●●

●●

●

●
●
●

●

●●

●

●●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●
●●
●

●

●

●
●

●
●●

●
●

●
●●●●●
●
●●●●●

●●●

●

●●●●

IPW AIPW

S
tandard unconf.

U
nconf. despite m

issingness

100 500 1000 5000 100 500 1000 5000

−5

0

5

10

−5

0

5

10

Method

mean.loglin

mean.grf

mice

mf

saem

mia.grf
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Fig 3: Model 1. IPW and AIPW estimations across simula-
tion designs described in Section 5.2. We report results for
all combinations of n ∈ {100, 500, 1000, 5000}, missing val-
ues mechanism ∈ {MCAR, general} and unconfoundedness ∈
{unconfoundedness despitemissingness, standard unconfoundedness}.
Results are displayed for 100 runs of every setting.
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Fig 4: Model 2. IPW and AIPW estimations across simula-
tion designs described in Section 5.2. We report results for
all combinations of n ∈ {100, 500, 1000, 5000}, missing val-
ues mechanism ∈ {MCAR, general} and unconfoundedness ∈
{unconfoundedness despitemissingness, standard unconfoundedness}.
Results are displayed for 100 runs of every setting.



28 I. MAYER ET AL.

●
●
●
●
●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●
●

●●●

●

●

●●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●
●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●●●

●

●
●

●

●●●

●

●
●

●

●●●

●

●

●
●

●●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●●●●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●
●
●

●

●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●
●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

IPW AIPW

S
tandard unconf.

U
nconf. despite m

issingness

100 500 1000 5000 100 500 1000 5000

−15

−10

−5

0

5

10

−15

−10

−5

0

5

10

Method

mean.loglin

mean.grf

mice

mf

saem

mia.grf

(a) MCAR (with 30% missing values in X·,1:10)
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Fig 5: Model 3. IPW and AIPW estimations across simula-
tion designs described in Section 5.2. We report results for
all combinations of n ∈ {100, 500, 1000, 5000}, missing val-
ues mechanism ∈ {MCAR, general} and unconfoundedness ∈
{unconfoundedness despitemissingness, standard unconfoundedness}.
Results are displayed for 100 runs of every setting.
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Fig 6: Model 4. IPW and AIPW estimations across simulation designs
described in Section 5.2. We report results for all combinations of n ∈
{100, 500, 1000, 5000} and missing values mechanism ∈ {MCAR, general}.
Results are displayed for 100 runs of every setting.
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Fig 7: Causal graph representing treatment, outcome, confounders and other
predictors of outcome (Figure generated using DAGitty (Textor, Hardt and
Knüppel, 2011); NAs indicates variables that still have missing values after
pre-treatment).

●

●

●

●

(b) imputation (MICE)

(a) MIA

−5 0 5 10 15 20
ATE (in %)

Im
putation.set

Imputation.method

●

●

●

FAMD

MICE

MIA

as.factor(type)

dr

ipw

ATE estimation on tbi patients

Fig 8: ATE estimations on Traumabase data (solid: doubly robust estimates;
dotted: IPW estimates; dashed vertical line: without adjustment; x-axis: τ̂
and bootstrap confidence intervals9).
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