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1. Proof for consistency for treatment effect estimation with
missing attributes. Below we provide the proof for the balancing prop-
erty of the generalized propensity score (6).

PROOF. We note that the distribution of W is fully specified by its mean.
Therefore we need to prove that:

E[Wi{Yi(0), Y;(1)}, X{] = EW3| X{] = E[W;|{Y3(0),Yi(1)}, e"(X7)] = E[Wle (X))
a) By the law of total expectation we have:

E[Wi|e"(X{)] = EEW:| X7, e"(XP)] | e"(X7)] = E[E[Wi| X[] [ e"(X])] = " (X)
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b) And again using the law of total expectation we have the following:

E[W: [{Yi(0), Ya(1)}, e"(X;)]

= BEW; [{Yi(0), Yi(1)}, X7, e"(X;)] | {Yi(0), Yi(1)}, e"(X7)]
E[E[W;[{Yi(0),Yi(1)}, X7][{Yi(0), Yi(1)}, e* (X7)]
EEW; | X7T|{Yi(0), Yi(1)},e"(X7)]  (assuming (7))
E[e*(X7) [{Yi(0), Yi(1)}, e"(X7)] = e"(X)
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2. Procedures. In this section we give the details of all procedures
omitted in the main article. The IPW counterparts to the Procedures pre-
sented in the main article and to Procedure 4 are obtained by simply drop-
ping the regressions of Y on the (proxies for the) confounders and by esti-
mating 7 using expression (3) and its generalized extension
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instead of expressions (4) and (9).

Procedure 4: AIPW with matrix factorization pre-processing.
This algorithm provides an estimation for the average treatment ef-
fect 7 using a matrix factorization pre-processing, given observed
covariates with missing attributes, observed treatment assignment
and outcome. We assume a low rank matrix factorization model for
X and unconfoundedness (1) given the latent factors U as detailed
in Section 3.2 and MCAR.

1. Estimate the latent factors U using SVD decomposition of X,
choose the number of latent factors by cross-validation.
2. Option 1 Nonparametric regression.

(a) Train a causal forest on (U, W,Y).
(b) Take the average over the out-of-bag predictions

of conditional average treatment effects 7(U;) =
E[Y;(1) — Y;(0)|U;] using the trained causal forest to

obtain an estimation 7 for 7 as in (4).

Option 2 Parametric regression (we additionally assume
logistic-linear model specification for (e, 11(0y, f£(1)))-

(a) Fit a logistic model to obtain predictions for the

propensity score e(Ui)

(b) Fit two separate linear models on (Y. w,=1, U};Wizl)
and on (Yi.w,=1, U, w;=1) respectively to obtain pre-
dictions for M(1)(0i) and M(o)(Ui) respectively.

(¢c) Combine the predictions following (4) to obtain a
doubly robust estimation 7 for 7.

3. Simulation study on synthetic data.

3.1. Interpretation and discussion of the results from Section 5.3. Figure
3a shows that if the data is MCAR and satisfies (5), saem works well as ex-
pected, i.e. it converges to the true value 7. Note however that the EM-based
estimators fail in the small sample case ((n,p) = (100,10)). This is likely
due to the strong correlation in the covariates, leading to numerically sin-
gular variance-covariance estimates for low sample sizes. Note that mia.grf
also converges but very slowly which is expected due to the smoothness of e*
and u’("w) and as it does not use the strong parametric assumptions which are
met in these simulations. The method mean.grf gives similar results than
mia.grf, which is expected according to the results from Josse et al. (2019).
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We observe that mean.loglin performs similarly to saem, in terms of con-
vergence and behavior w.r.t. the unconfoundedness assumptions. Figure 3a
shows as well that mice works under both unconfoundedness assumptions
as expected!. In particular, when only (1) holds and (7) is violated, then all
methods but multiple imputation give biased results.

In the general missingness case, Figure 3b, we only expect mia.grf and
mean.grf to perform well as explained in Section 4.1.2. However their con-
vergence seems to be very slow which again can be explained with the strong
parametric and smooth models we defined with the attributes X and that
are hard to estimate with random forests. The good performance of the oth-
ers estimators in this general case can only be observed when the mask R
is used in the estimation, otherwise these methods fail in this setting, as
expected but not shown in Figure 3b.

Under Model 3, Figures 4 show that, as expected, if (5) is satisfied, our
estimator mia.grf converges quickly to the true value 7 while the other
methods remain biased. With the exception of mice, all other methods fail
if the “unconfoundedness despite missingness” assumption is violated, inde-
pendently from the missingness mechanism. However mia.grf and mean.grf
in ATIPW-form seem to cope well even under the standard unconfoundedness
(1).

Figures S.1a and S.1b show that under Model 4, mia.grf converges to
the true value 7 in all cases but rather slowly, provided assumption (5) is
met. Even in the “simplest” MCAR case, the parametric observed-likelihood
based approach, namely saem, fails under DLVM for small sample sizes
(n € {100,500}). Indeed, while satisfying the necessary normality assump-
tion, the observations X; are not i.i.d. due to their (nonlinear) dependence
on the (latent) codes C;. This behavior of mia.grf and saem is again in accor-
dance with Section 4. The multiple imputation method yields some biased
estimations in the MCAR case but performs well in the general case (with
the mask). Note that the poor performance of the estimator based on low-
rank matrix factorization (mf) is not surprising since the latency structure
arises in the covariate generating process, but the confounders themselves
are defined as the observed X rather than the latent factors (C or p(C)).

For model 4, where treatment and outcome are unconfounded given some
latent factors U, we observe on Figure 5 that the estimator based on low-rank
matrix factorization in the MCAR performs well. This result is expected,
since we assume confoundedness on to the latent factors U and not the par-
tially observed covariates X. Hence the crucial point for recovering the treat-

!Note that the small remaining bias with multiple imputation is likely to vanish as the
number of imputations increases.



4 I. MAYER ET AL.

ment effect is the recovery of these latent factors U, as pointed out by Kallus,
Mao and Udell (2018). Interestingly, all methods—except saem which fails
in the case of informative missingness—empirically perform well in this sce-
nario scenario. This again, is only observed as long as the mask is used for
estimation. Furthermore, our mia.grf and mean.grf seem to converge to the
true value of 7 despite the “wrong” unconfoundedness assumption.

3.2. Simulation results for a variant of Model 4. We start by report-
ing in Figure S.1 the simulation results for Model 4 omitted in the main
manuscript.

The hierarchical data-generating model used in Section 5.2 can be mod-
ified in order to allow for correlation between covariates by defining the
code-depending Gaussian parameters as

(1(c), 2(c)) = (U(V tanh(We 4 a) +b),U exp(y! (We+a) + ) L,UT),

for some randomly generated orthonormal matrix U.

The difference in terms of bias and variability between the AIPW-type es-
timators and their IPW-type equivalent is clear in this scenario. However the
difference in terms of bias w.r.t. the different unconfoundedness assumptions
is less apparent. More precisely, mia.grf and mean.grf seem to approximate
the true treatment effect 7 for large sample sizes (n > 500) similarly in both
scenarios (first and second line in Figure S.2a and S.2b). These observations
require further investigations in the future.

4. Details on the medical application (Traumabase).

4.1. Definition of the variables of the Traumabase used in the analysis.
Here we provide the names and short descriptions of the variables we use in
our causal analysis. The moment at which the variable is first available is
given in parentheses (ph = pre-hospital phase, h = hospital phase).

List of confounders:.

o Trauma.center (categorical): name of the trauma center. (ph/h)

o SBP.ph, DBP.ph, HR.ph (continuous): systolic and diastolic arterial
pressure and heart rate during pre-hospital phase (SBP.ph = min(SBP.min,
SBP.MICU), etc.); MICU = mobile intensive care unit. (ph)

o Cardiac.arrest.ph (categorical): cardiac arrest during pre-hospital phase.
(ph)

o HemoClue.init (continuous): prehospital capillary hemoglobin concen-
tration (the lower, the more the patient is probably bleeding and in
shock); hemoglobin is an oxygen carrier molecule in the blood. (ph)
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Fig S.1: Model 4. IPW and AIPW estimations across simulation designs
described in Section 5.2. We report results for all combinations of n €
{100, 500, 1000, 5000}, missing values mechanism € {MCAR, general} and
unconfoundedness € {- despite missingness, complete data -}. Results are
displayed for 100 runs of every setting.
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Fig S.2: Modified model 4 (dense covariance matrices). IPW and AIPW
estimations across simulation designs described in Section 5.2. We re-
port results for all combinations of n € {100,500,1000,5000}, miss-
ing values mechanism € {MCAR, general} and unconfoundedness €
{- despite missingness, complete data -}. Results are displayed for 100 runs
of every setting.
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SpO2.min (continuous): peripheral oxygen saturation, measured by
pulse oxymetry, to estimate oxygen content in the blood (95 — 100%:
considered normal; < 90% critical and associated with considerable
trauma, danger and mortality). (ph)

Vasopressor.therapy (continuous): treatment with catecholamines in
case of physical or emotional stress increasing heart rate, blood pres-
sure, breathing rate, muscle strength and mental alertness. (ph)
Cristalloid.volume (continuous): total amount of prehospital adminis-
tered cristalloid fluid resuscitation (volume expansion). (ph)
Colloid.volume (continuous): total amount of prehospital administered
colloid fluid resuscitation (volume expansion). (ph)

Shock.index.ph (continuous): ratio of heart rate and systolic arterial
pressure during pre-hospital phase. (ph)

AlIS.external (discrete, range: [0,6]): Abbreviated Injury Score for ex-
ternal injuries, here it is assumed to be a proxy of information avail-
able/visible during pre-hospital phase. (ph/h)

Delta.hemoCue (continuous): Difference of hemoglobin level between
arrival at the hospital and arrival on the scene. (h)

Activation. HS.procedure (categorical): activation of hemorragic shock
procedure in case of HS suspicion. (h)

List of predictors of mortality and that are not associated with treatment
assignment.

Anticoagulant.therapy (categorical): oral anticoagulant therapy before
the accident. (ph)

Antiplatelet.therapy (categorical): anti-platelet therapy before the ac-
cident. (ph)

GCS(.init) (discrete, range: [3, 15]): Initial Glasgow Coma Scale (GCS)
on arrival on scene of enhanced care team and on arrival at the hospital
(GCS = 3: deep coma; GCS = 15: conscious and alert). (ph & h)
GCS.motor(.init) (discrete, range: [1, 6]): Initial Glasgow Coma Scale
motor score (GCS.motor = 1: no response; GCS.motor = 6: obeys
command /purposeful movement). (ph & h)

Pupil.anomaly (categorical): pupil dilation indicating brain herniation.
(ph & h)

Osmotherapy (categorical): administration of osmotherapy to alleviate
compression of the brain (either Mannitol or hypertonic saline solu-
tion). (ph & h)

Improv.anomaly.osmo (categorical): change of pupil anomaly after ad-
ministration of osmotherapy. (ph)
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o Medcare.time.ph (continuous): total duration of prehospital care team
engaged (arrival on scene to arrival at hospital). (h)

o F02 (discrete, range: [0, 5]): inspired concentration of oxygen on ven-
tilatory support (the higher the more critical; Ventilation = 0: no
ventilatory support). (h)

o Temperature.min (continuous): Minimal body temperature. (h)

o TCD.PILmaz (continuous): pulsatility index (PI) measured by echodoppler
sonographic examen of blood velocity in cerebral arteries (PI > 1.2:
indicates altered blood flow maybe due to traumatic brain injury). (h)

o IICP (categorical): at least one episode of increased intracranial pres-
sure; mainly in traumatic brain injury; usually associated with worse
prognosis. (h)

o EVD (categorical): external ventricular drainage (EVD); mean to drain
cerebrospinal fluid to reduce intracranial pressure. (h)

o Decompressive.craniectomy (categorical): surgical intervention to re-
duce intracranial hypertension. (h)

o Neurosurgery.day0 (categorical): neurosurgical intervention performed
on day of admission. (h)

o AIS.head, AIS.face (discrete, range: [0, 6]): Abbreviated Injury Score,
describing and quantifying facial and head injuries (AIS = 0: no in-
jury; the higher the more critical).(h)

o ISS (discrete, range: [0, 108]): Injury Severity Score, sum of squares of
top three AIS scores. (h)

o IGS.II (continuous): Simplified Acute Physiology Score. (h)

4.2. Covariate balance on observed values and response pattern (mask).
Since the treatment assignment is not randomized in observational study,
it is natural to observe important differences for instance in terms of stan-
dardized mean differences of the confounding variables between treatment
and control groups. Indeed on Figure S.3 we observe that certain features
such as the blood pressure variables differ considerably between the two
groups. The treatment being prescribed for injuries that affect these hemo-
static parameters, it is not surprising to see important differences for these
parameters before adjustment. When comparing balance for the GRF and
multiple imputation approach in terms of standardized mean differences,
we note on Figure S.3 that both methods achieve similar balance on the
observed values but, as expected, only GRF additionally achieves balance
on the response pattern. This latter point is discussed in more detail in the
main manuscript.
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Fig S.3: Absolute standardized mean differences. Red: before adjustment,
blue: after adjustment.

4.3. ATE estimation on the Traumabase using overlap weights. An often
raised concern with many medical observational data sets is the potential
violation of the overlap assumption. For instance some patients might never
get the treatment due to infrastructural circumstances or due to recommen-
dations followed strictly by the entire medical staff. The overlap assump-
tion however is needed for consistency of the treatment effect estimations
and states that every patient has a non-zero probability of being in either
treated or control group. Another way of describing this assumption is that
the treatment groups are sufficiently comparable, otherwise the attempt of
drawing causal inferences is doomed to failure from the beginning.

Given the important level of heterogeneity among trauma patients, espe-
cially among patients with traumatic brain injury, and the multi-level and
multi-actor nature of the data, it cannot be ruled out that the treatment
groups have only small overlap. As detailed in Section 7, a possible solution
to deal with this potential situation is the use of overlap weights instead
of the inverse propensity weights (Li, Morgan and Zaslavsky, 2018). In our
case, when using the corresponding modified estimands and estimators, i.e.,
the average treatment effect on the overlap population, the results reported
in Figure S.4 differ slightly from those from the normal average treatment
effect estimation on the entire population (Figure 7) as they give evidence of
an increase in mortality among traumatic brain injury patients. This result
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is not in contradiction with the clinical trial ? since the overlap popula-
tion is not directly comparable to the trial population (isolated traumatic
brain injury without major extracranial hemorrhage). The observed results
on the overlap population could clinically make sense since the treatment
increases the risk of developing arterial thromboembolic events (such as a
stroke) (Medcalf, 2015). Further discussions about the different findings on
the entire population and the overlap population and their plausibility will
be provided in a forthcoming medical publication.

-(a) GRF

-(b) imputation (MICE)

-i0 10 20 30

Fig S.4: ATE estimations on overlap population on Traumabase data (solid:
doubly robust estimates; dotted: IPW estimates; dashed vertical line: with-
out adjustment; z-axis: 7 and asymptotic confidence intervals?).
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