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Abstract
Most signal processing applications require a good choice of representation

of the data for numerous reasons. For instance, classical tasks such as com-

pression, denoising or classification can be performed more easily when the

data is represented in terms of certain bases that exploit special structure in

high-dimensional data. One specific representation is obtained by decompos-

ing the data in terms of a dictionary, whose elements are either predefined such

as wavelets or learned directly from the data. When the representation is as-

sumed to be sparse, i.e., when each data point is a linear combination of a few

elements from the dictionary, the latter problem is called Sparse Dictionary

Learning (SDL). This class of data modeling methods exploits certain struc-

ture in the data which can be formulated as: the data lies in a union of low-

dimensional subspaces and therefore the dictionary elements, called atoms, can

be seen as basis elements of these subspaces. Since the dictionary is typically

overcomplete, the atoms are actually dependent and should be considered as

frames for the subspaces that capture the main directions in terms of compact

representations. While a variety of efficient algorithms that give approximate

solutions for the SDL problem have been proposed, the theoretical analysis of

this problem remains a key challenge due to its non-convexity. In this work

we present a step towards a theoretical understanding of global optimality for

the SDL problem. In particular, we show that by regularizing the SDL prob-

lem with a certain function that penalizes the number of dictionary atoms it is

possible to derive conditions under which an optimal dictionary can be found.

We also demonstrate this analysis with an application of SDL to the problem

of Subspace Clustering.
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1 Introduction
Modeling data as sparse linear combinations of some basis elements is a

widely used approach to deal with complex data and is motivated by differ-

ent applications in various domains. For example in signal processing, sparse

representations can allow for better results in signal denoising and compres-

sion [10, 27], machine learning sparse representations can lead to better re-

sults in classi�cation [26, 37], and in statistics sparse modeling can be used

for variable selection resulting in more interpretable statistical models [35].

The main assumption and goal of such models can be described as follows: the

relevant information contained in the (often high-dimensional) data often lies

in a low-dimensional structure and �nding this low-dimensional structure can

therefore allow for more ef�cient, robust and interpretable data processing. If

one assumes that the data can be modeled by a linear low-dimensional struc-

ture, i.e. by one or more linear subspaces, the model which allows recovering

such structure is called structured matrix factorization . In this section, we give

the formal de�nition of structured matrix factorization, some of its well-known

applications and we cast a speci�c class of sparse models called sparse dictio-

nary learning as a special case of structured matrix factorization. In sparse

dictionary learning each data point is decomposed as a sparse linear combi-

nation of elements from a dictionary, and both the dictionary and the sparse

representations are learned from the data. We will discuss its applicability to

another special case of structured matrix factorization, the problem of subspace

clustering .

1



CHAPTER 1. INTRODUCTION

1.1 Problem formulation

Let X 2 RD � N be the data matrix which can be considered as the con-

catenation of N vectorized signals f x i ; : : : ; x N g � RD . Under the linear data

model, i.e. the assumption that the data can be approximated by one or more

linear subspaces, structured matrix factorization consists in decomposing the

data X into two factors U and V in a way that translates or exploits the low-

dimensionality assumptions on the data. More formally, given a loss function

` which measures the quality of approximation of the factorization UVT w.r.t.

the initial data X and a regularization function � which enforces speci�c struc-

ture on the factors U and V, we can write the structured matrix factorization

problem as:

min
U2 RD � r

V 2 RN � r

`(X; UV T ) + � �( U; V); (1.1)

where we usually assume r < minf D; N g. The interest of structured matrix

factorization is two-fold: especially in the case of high-dimensional data it can

considerably reduce the representation complexity of the data (i.e. O((D +

N )r ) instead of O(DN )). Furthermore, it can allow to separate the information

contained in the data into the different factors by enforcing certain constraints

on each factor, such as spatial and temporal information in the case of videos

as demonstrated in [18] and therefore reveal interesting patterns in the data.

The generic form of (1.1) allows to derive other possible applications and to cast

other well-known models as special cases of this problem.

We will now turn to the problem of sparse dictionary learning and explain

the choices of loss and regularization function for (1.1) in this case. Given

a set of N signals f x 1; : : : ; x N g � RD , the dictionary learning problem con-

sists of �nding a set of dictionary atoms f d1; : : : ; dr g � RD and N sparse codes

f a1; : : : ; aN g � Rr that allow to recover, either exactly or approximately, the

initial set of signals (which can be one-dimensional but also vectorized forms of

multi-dimensional data such as images or videos). In other words, it requires

solving the following problem:

2



CHAPTER 1. INTRODUCTION

min
d1 ;:::;d r 2 RD

a1 ;:::;aN 2 Rr

1
2

NX

i =1

 

x i �
rX

j =1

(a i ) j d j

! 2

+ � �( f dkgr
k=1 ; f akgr

k=1 ); (1.2)

where � is de�ned on the dictionary atoms and the sparse codes and � � 0 is a

parameter adjusting the trade-off between data �delity and regularization.

In matrix form this problem can be rewritten as

min
D 2 RD � r

A2 Rr � N

1
2

kX � DA k2
F + � �( D; A ); (1.3)

where the r columns of D are the dictionary atoms and the N columns of A

contain the sparse representation of the data X = [ x 1 : : : x N ] 2 RD � N in terms

of the dictionary D.

Without any regularization, i.e. if � = 0, this problem can be an ill-posed

signal reconstruction problem. For instance, given a signal x 2 RD and a dictio-

nary D with non-trivial null-space, there are in�nitely many solutions a 2 Rr

to the problem mina
1
2kx � Dak2

2. But assuming that the decomposition of the

data into D and A is such that each signal only “uses” very few atoms, i.e. the

columns of A are sparse, and that the dictionary is overcomplete ( r > D ), the

problem becomes the Sparse Dictionary Learning problem (SDL), �rst intro-

duced in [28] to ef�ciently process natural image patches. Hence the regular-

ization function � can be considered to be de�ned on the `1;1 norm of matrix A,

i.e. on the sum of the absolute values of all its entries, since it is well known

that the `1 norm is a sparsity-inducing convex relaxation of the pseudo-norm `0.

The resulting decomposition of the data into dictionary and codes is illustrated

in Figure 1.1.

Another well-known class of problems which exploits (and recovers) a cer-

tain structure of the – often high-dimensional – data and which can be cast as a

matrix factorization model is Subspace Clustering (SC). For this class of prob-

lems the goal is to recover a low-dimensional structure which the data comes
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CHAPTER 1. INTRODUCTION

Figure 1.1: Sparse dictionary learning model.

from, more speci�cally a union of multiple low-dimensional subspaces, allow-

ing for a more robust and compact representation of the data. Since this is

a combinatorial problem which is NP-hard, current subspace clustering meth-

ods (see [36] for a review) only seek to �nd a possible representation of the

subspaces (a large dictionary with linearly dependent atoms) and to identify

which subspace a data point comes from, based on such a dictionary. The sub-

spaces' representation being redundant, one cannot hope for a unique sparse

representation.

While the applications of structured matrix factorization, and of sparse dic-

tionary learning and subspace clustering as special cases, are numerous, the

main issue is that it is a non-convex problem due to the matrix multiplication

in the data �delity term of the objective function. Therefore most optimization

strategies require good heuristics for the choice of initialization and there are

no guarantees on global optimality. But if we keep the dictionary D in (1.3)

�xed and assume that � is convex w.r.t. A, the problem reduces to a regular-

ized least squares problem in A and is therefore a convex problem (for speci�c

choices of � such as the `1 norm numerous ef�cient algorithms solving this

lasso-type problem, known as sparse coding, have been proposed [9,25]). How-

ever, analyzing and solving the joint optimization problem is much more chal-

lenging and is still an open �eld of research. Motivated by the work of [4] and
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CHAPTER 1. INTRODUCTION

more speci�cally [18] who proposed a general matrix factorization framework

to characterize global optimality and several explicit methods to �nd globally

optimal solutions in certain cases of structured matrix factorization, we follow

the same line of approach to analyze the non-convex SDL problem.

1.2 Related work

M ATRIX FACTORIZATION AND SPARSE DICTIONARY LEARNING

The analysis of the optimization landscape of non-convex decomposition or

signal recovery problems has recently gained much attention due to the recur-

ring empirical observation that many apparently hard problems can be rea-

sonably well solved by approximate local strategies which do not come with

a guarantee to converge to a “good” solution of non-convex problems but only

to some local optima or critical points. This suggests that the optimization

landscape of these problems is favorable in the sense that there are no spuri-

ous local minima or bad saddle points and therefore any descent strategy can

achieve a good result without getting stuck in a bad critical point.

For the case of non-convex low-rank matrix optimization problems [38] showed

that there are no spurious local minima and extend the concept of strict saddle

property introduced by [13] implying that most optimization strategies such

as gradient descent converge to a global solution from any initialization. The

problem of optimal dictionary recovery has been studied by [34] in the com-

plete case (r = D) over the sphere and they propose an algorithm that provably

recovers an optimal sparsifying dictionary, again by using the argument that

there are no spurious local minima. Extending the ideas of [17,18], the authors

of [32] propose a method with guarantees on global optimality to solve the sep-

arable dictionary learning problem applied to tensors. Another approach to

(approximately) solve such non-convex matrix factorization problems is to in-

troduce some convex relaxation (such as the nuclear norm in the low-rank ma-

trix factorization case, [6]) to transform the factorization problem into a convex

5



CHAPTER 1. INTRODUCTION

matrix approximation problem. Convex relaxations are an appealing solution

from the methodological point of view since they allow an easier analysis of

problem and its optimal solutions and can often be solved by using standard

optimization tools (ef�cient MATLAB implementations are provided for instance

by [15]). A caveat however is that these formulations often do not scale to larger

dataset, i.e. their application to large scale datasets is challenging and often

inadvisable from a practical point of view. Furthermore the use of (tight) con-

vex relaxations cannot capture the entire modeling �exibility of the structured

matrix factorization formulation. For instance, certain structures on the fac-

tors U and V, such as non-negativity [22], cannot be promoted by regularizing

their product UVT .

SUBSPACE CLUSTERING

Many different approaches have been proposed for solving the subspace

clustering problem, ranging from a generalization of the well-known k-means

to the multiple subspace setting, to algebraic, statistical and spectral methods

(see [36] for a review). Among the spectral methods the Sparse Subspace Clus-

tering (SSC, [11]) is particularly ef�cient (it only requires to solve a convex

`1 minimization problem) and robust to different types of contaminated data

such as noise, missing data and sparse outliers. The problem of sparse sub-

space clustering is also non-convex but under certain assumptions on the data

distribution and subspace con�guration the solution to the convex surrogate

problem induced by the `1 norm provides the desired sparse representation of

the data. Another assumption which can be made is that the data allows a

low-rank representation [23] and in the case of noise-free data drawn from in-

dependent subspaces, the optimal solution to the corresponding optimization

problem can be written in closed form from the SVD of the data. These meth-

ods consider the data as a self-expressive dictionary, the factorization of the

initial data X into two factors therefore does not come with any (memory) com-

plexity reduction. [3] however propose a subspace clustering method which is

6



CHAPTER 1. INTRODUCTION

based on a smaller dictionary and the clustering is then made possible through

bipartite graph modeling.

1.3 Contributions

In this work we present a theoretical and experimental study of the problem

of structured matrix factorization in the case of sparse dictionary learning. We

focus on the problem of solving an auxiliary optimization problem, the polar

problem, which serves as a certi�cate of global optimality for the initial SDL

problem. We give some intuitions and �rst steps towards a theoretical analysis

of the polar problem for the sparse dictionary learning problem and discuss the

impact of approximation errors on the initial problem. We also experimentally

demonstrate its relevance for solving the overall matrix factorization formula-

tion, especially for recovering the “generating” factorization size on data drawn

from a union of subspaces.

In Chapter 2 we provide the theoretical analysis of global optimality for

the SDL problem, discuss and analyze the challenges of verifying the derived

global optimality conditions and propose an iterative algorithm for SDL based

on the previous analysis. In Chapter 3 we draw a connection of our SDL model

to existing subspace clustering models to motivate a novel approach to sub-

space clustering via our SDL matrix factorization formulation.

Notations

In the next chapters, we will use the following fairly standard notations: [n]

denotes the set of positive integers up to n, f 1; : : : ; ng; for a set S � 
 we denote

its complement by Sc = 
 nS � 
 ; scalars are denoted by regular lower case

letters, vectors by bold lower case letters; matrices are denoted by capital let-

ters. Columns and rows of a matrix X 2 Rm� n are referenced by X j with j 2 [n]

and X <i> with i 2 [m] respectively. For a scalar a, we de�ne (a)+ := max( a;0).

7



CHAPTER 1. INTRODUCTION

Unless speci�ed differently, all vectors are considered as column vectors. The

notation k�k will be used indifferently for both vector and matrix norms. For in-

stance k � kF denotes the Frobenius norm on matrices, k � kk! l the k ! l operator

norm and k � kk;l the L k;l norm ( k; l 2 N� ).

8



2 Global Optimality for Sparse

Dictionary Learning
In this chapter we will analyze the problem of Sparse Dictionary Learning

as a particular case of regularized matrix factorization problem and charac-

terize its global optima. Based on these characterizations of global optimal-

ity we propose an iterative algorithm for solving the non-convex optimization

problem. We will focus on an auxiliary optimization problem which arises in

these characterizations of global optima. We empirically assess the dif�culty

of solving this problem, propose a conjecture on its optimization landscape

and present initialization and optimization strategies which empirically lead

to good approximate solutions.

2.1 Review of Conditions for Global Op-

timality in Structured Matrix Fac-

torization

We recall the standard formulation of sparse dictionary learning which we

want to analyze as a special case of the structured matrix factorization prob-

lem.

min
U2 RD � r

V T 2 Rr � N

1
2

kX � UVT k2
F + � kVk1;1 subject to kUi k2 � 1for all i 2 [r ]: (2.1)

The objective is a sum of a differentiable loss function and a convex but non-

differentiable regularization function. The loss function is convex w.r.t. the

9



CHAPTER 2. GLOBAL OPTIMALITY FOR THE SDL PROBLEM

product UVT and w.r.t. each factor but it is not jointly convex in (U; V), making

the overall optimization problem non-convex. Minimization is de�ned over U

and V which are of �xed size, i.e. the size r of the factorization is part of the

problem dimensions (D; N; r ) 2 (N+ )3.

Before we derive our sparse dictionary learning model from the above for-

mulation and delve into its analysis we begin by de�ning some relevant nota-

tions and quantities, following the work of [17,18].

De�nition 1 (Rank-1 regularizer, [18]) . A function � : RD � RN ! R+ [ 1 is

said to be a rank-1 regularizer if

1. � (u ; v) is positively homogeneous with degree p > 0, i.e. � (� u ; � v) =

� p� (u ; v), 8 � � 0, 8 (u ; v) 2 RD � RN .

2. � (u ; v) is positive semi-de�nite, i.e. � (0; 0) = 0 and � (u ; v) � 0 for all (u ; v).

3. For any sequence (u n ; vn ) such that ku nvT
n k ! 1 we have that � (u n ; vn ) !

1 .

De�nition 2 (Elemental mapping, r -element factorization mapping, [18]) . An

elemental mapping � : RD � RN ! RD � N is any mapping which is positively

homogeneous with degree p > 0. The r -element factorization mapping � r :

RD � r � RN � r ! RD � N is de�ned as � r (U; V) =
P r

i =1 � (Ui ; Vi ).

Unless speci�ed differently we will use � : (u ; v) 7! uv T and � r : (U; V) 7!

UVT =
P

i Ui V T
i as elemental mapping and r -element factorization mapping

respectively.

These de�nitions can be extended to higher dimensions, for instance to an-

alyze more general tensor decomposition problems as detailed in [18], but here

we limit the presentation to the matrix factorization case as it is suf�cient to

analyze the problem of sparse dictionary learning.

De�nition 3 (Matrix factorization regularizer, [18]) . Given a rank-1 regular-

izer � which is positively homogeneous with degree 2, the matrix factorization

10



CHAPTER 2. GLOBAL OPTIMALITY FOR THE SDL PROBLEM

regularizer 
 � : RD � N ! R+ [ 1 is de�ned as


 � (Y) = inf
r 2 N

inf
U2 RD � r

V 2 RN � r

rX

i =1

� (Ui ; Vi ) subject to Y = UVT : (2.2)

An important remark on this last de�nition is that such a matrix factor-

ization regularizer will be convex w.r.t. Y . And we can also note that if � is

such that � (� u ; v) = � (u ; v) or � (u ; � v) = � (u ; v) for all (u ; v), then 
 � is a

norm on X , called atomic norm or decomposition norm . For instance, taking

� (u ; v) = kuk2kvk2, this de�nition corresponds to the variational form of the

nuclear norm k � k� for matrices which is de�ned as the sum of the singular

values of a matrix.

These de�nitions allow to introduce the framework proposed in [18] with the

following key idea: the matrix factorization regularizer allows to tightly couple

the structured matrix factorization problem which is non-convex in (U; V) to a

problem that is convex in Y. Exploiting the convexity of the latter allows to

analyze the former and to derive conditions of globally optimality for it. An

important aspect which allows this coupling is to consider the factorization

size r as one of the variables and therefore to optimize over factorizations of all

possible sizes r 2 N+ .

We can now go on to analyze how the sparse dictionary learning problem

can be cast into this matrix factorization framework in order to give global

optimality conditions for the non-convex sparse dictionary learning problem.

As pointed out in [5], constraining the dictionary atoms in problem (2.1) to have

`2-norm less than 1 is equivalent to penalizing their `2-norm by integrating

these terms in the regularization term of the objective function. Indeed, this

becomes clear if we write the variational form of the `2;1 norm of some matrix

M = [ M 1 : : : MN ]

kM k2;1 =
NX

i =1

kM i k2 =
1
2

min
� i � 0

NX

i =1

kM i k2
2

� i
+ � i ; (2.3)

11



CHAPTER 2. GLOBAL OPTIMALITY FOR THE SDL PROBLEM

which is obtained by a simple application of the Cauchy-Schwarz inequality.

Additionally we will allow the factorization size r to vary, since we argued ear-

lier that this will allow to couple this non-convex factorization problem to a

closely related convex problem. This leads to a �rst formulation:

min
U2 RD � r

V 2 RN � r

r 2 N+

1
2

kX � UVT k2
F + �

rX

i =1

kUi k2kVi k1 (2.4)

Observe that the factorization of a matrix Y as the product UVT is not unique

due to a rotational ambiguity, i.e. if (U; V) 2 RD � r � RN � r are such that

Y = UVT , then for any orthogonal matrix R 2 O(r ), we have Y = URRT V T .

The regularizer can eliminate this ambiguity by enforcing special structure on

the factors U and V, which in turn enforces special structure on the column

and row spaces of UVT , respectively. For instance, using the `1 norm on the

columns of V, i.e. in the row space, the decomposition of the data X over the

dictionary will be very sparse and the dictionary will consequently be large

since we optimize over all possible factorization sizes. Conversely, using the

`2 norm on the columns of V will lead to a compact dictionary but the codes

(rows of V) will not be sparse. In order to de�ne a trade-off between these two

boundary cases we modify the regularization function and propose to solve the

alternative problem:

min
U2 RD � r

V 2 RN � r

r 2 N+

1
2

kX � UVT k2
F

| {z }
` (X; � r (U;V ))

+ �
rX

i =1

kUi k2(
 kVi k1 + (1 � 
 )kVi k2)

| {z }
� 
 (U;V )

(2.5)

Again we draw the attention to the fact that in the above formulation mini-

mization is carried out over the factors and the factorization size r . This im-

plies that the optimality conditions we will present next are also de�ned on

the factorization size, superseding the model selection step that requires the

use of some heuristics in most applications to de�ne a �xed size of the factors

prior to solving the factorization problem. Instead, the size of the factorization

12



CHAPTER 2. GLOBAL OPTIMALITY FOR THE SDL PROBLEM

is data-driven through the use of the regularization function � 
 .

The loss term of the objective function (2.5) remains unchanged from the

previous formulations (2.1) and (2.4). But we introduce a new regularization

function that depends on the parameter 
 2 [0; 1]. Observe that the new reg-

ularization function is de�ned as the sum of a rank-1 regularizer over the

columns of U and V. Indeed we easily see that

� 
 : (u ; v) 2 RD � RN 7! k uk2(
 kvk1 + (1 � 
 )kvk2) 2 R+

is positively homogeneous with degree 2, positive semi-de�nite and such that

for any sequence (u n ; vn ) such that ku nvT
n k ! 1 , we have � 
 (u n ; vn ) ! 1

(since for all n 2 N, ku nvT
n k = ku nk2kvnk2 � k u nk2kvnk1 and therefore ku nvT

n k �

� 
 (u n ; vn )).

We remark that the regularization function � 
 is closely related to the ma-

trix factorization regularizer (2.2), also referred to as decomposition norm or

atomic norm in the sense that we always have

`(X; Y ) + � 
 � 
 (Y)
| {z }

=: F (Y )

� `(X; � r (U; V)) + � � 
 (U; V)
| {z }

=: f (U;V )

(2.6)

8(U; V) such that Y = � r (U; V) = UVT .

The main result of [18] makes use of this global lower bound of the non-

convex objective function f (in the factor space) by the convex function F (in

the product space) to prove the following results:

Theorem 1 (Theorem 1 in [18]) . Given a function `(X; Y ) that is convex in Y

and once differentiable w.r.t. Y , a rank-1 regularizer � 
 and a constant � > 0,

local minima ( ~U; ~V) of (2.5) are globally optimal if ( ~Ui ; ~Vi ) = (0 ; 0) for some

i 2 [r ]. Moreover, Ŷ = � r ( ~U; ~V) = ~U ~V T is global minima of F (Y) and ~U ~V T is an

optimal factorization of Ŷ , i.e. it achieves the in�mum in the de�nition (2.2) of

the atomic norm 
 � 
 (Ŷ ).

This theorem roughly states that under the given assumptions any local

13



CHAPTER 2. GLOBAL OPTIMALITY FOR THE SDL PROBLEM

minima of f which is suf�ciently large is a global minima. And the following

corollary suggests a way to verify that a given point is a local minima and

suf�ciently large, hence a global minima.

Corollary 1 (Corollary 1 in [18]) . Under the same assumptions as in the previ-

ous theorem, a local minima ( ~U; ~V) of f (U; V) is globally optimal if it satis�es:

1. ~UT
i

�
� 1

� r � r `(X; � r ( ~U; ~V))
�

~Vi = � 
 ( ~Ui ; ~Vi ) for all i = 1; : : : ; r

2. u T
�

� 1
� r � r `(X; � r ( ~U; ~V))

�
v � � 
 (u ; v) for all (u ; v).

It can be shown that for our choice of rank-1 regularizer, � 
 , any �rst-order

optimal point of (2.5) satis�es condition 1 [18, Proposition 3] 1. The second

condition implies that at ( ~U; ~V), the addition of any new direction (u ; v), i.e.

(U; V)  ([ ~U
p

� u ]; [ ~V
p

� v]) for some � > 0, will only increase the objective

function f . This can be seen more easily by rearranging the terms of the in-

equality above:

u T

�
�

1
�

r � r `(X; � r ( ~U; ~V))
�

v � � 
 (u ; v) , 0 � hr � r `(X; � r ( ~U; ~V)); uv T i + �� 
 (u ; v);

where the right hand-side of the second equivalent term corresponds to the

directional derivative of the objective function in the direction (u ; v). Therefore

if condition 2 of the corollary holds we have f ([ ~U
p

� u ]; [ ~U
p

� v]) � f ( ~U; ~V),

since by using the convexity of the loss ` w.r.t. to its second argument we have:

f ([ ~U
p

� u ]; [ ~V
p

� v]) = `(X; ~U ~V T + � uv T ) + �
rX

i =1

� ( ~Ui ; ~Vi ) + �� (u ; v)

� `(X; ~U ~V T ) + � hr � r `(X; � r ( ~U; ~V)); uv T i

+ �
rX

i =1

� 
 ( ~Ui ; ~Vi ) + ��� 
 (u ; v)

� f ( ~U; ~V):

1This proposition actually covers a broader class of possible rank-1 regularizers that encom-
passes the product of norms as a special case.
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If condition 2 is violated, i.e. we �nd a pair (u ; v) that does not satisfy the

inequality in Corollary 1, we have found a descent direction that allows to de-

crease the objective by exactly �
�

hr � r `(X; � r ( ~U; ~V)); uv T i + �� 
 (u ; v)
�

where

� is some (small) positive step-size.

The authors of [18] point out that condition 2 of the corollary can be veri�ed

by evaluating the so-called polar function 
 �
� 


at Z = � 1
� r � r `(X; � r ( ~U; ~V)) and

testing whether 
 �
� 


(Z ) � 1 where 
 �
� 


(Z ) is de�ned as


 �
� 


(Z ) = sup
u ;v

u T Zv s.t. � 
 (u ; v) � 1: (2.7)

Indeed, this becomes clear when writing out the following equivalences:

u T Zv � � 
 (u ; v) for all (u ; v) (2.8)

,
u T Zv

� 
 (u ; v)
� 1 for all (u ; v) (2.9)

, sup
(u ;v )

� 
 (u ;v )� 1

u T Zv � 1 (2.10)

Solving this last problem is referred to as solving the polar problem associ-

ated to the function 
 � 
 .

Before we discuss this auxiliary optimization problem in more detail we �rst

cite an algorithm proposed in [18] and built upon the above results for solving

the structured matrix factorization problem. We present the algorithm in the

case of the sparse dictionary learning problem.

2.2 Structured matrix factorization al-

gorithm for SDL

We will now present the high-level structure of the SDL matrix factoriza-

tion algorithm as well as the key elements of each sub-routine, especially the

different local optimization strategies.

15
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2.2.1 Meta-algorithm

An adaptation of the proposed structured matrix factorization Meta-Algorithm

(Algorithm 1, [18]) for the sparse dictionary learning problem has been im-

plemented by Connor Lane 2 in MATLAB . In what follows we will present the

details of this adapted algorithm and contributed modi�cations to this imple-

mentation.

Algorithm 1: SDL Matrix Factorization
Input: data X , initial factorization (Uinit ; Vinit )
of size r init . Result: optimal factorization (Uf inal ; Vf inal ) of size r f inal

. while not converged do
1) Local descent to a �rst-order optimal point ( ~U; ~V).
2) Solve the SDL polar problem at Z = � 1

� r � r `(X; � r (U; V)).
if polar value � 1 then

Algorithm has converged.
else

Append the polar solution (u � ; v � ) to ( ~U; ~V):
(U; V)  ([ ~U

p
� u � ]; [ ~V

p
� v � ]) for some � > 0.

end
end

The intuition behind the meta-algorithm in [18] is built upon Corollary 1.

Speci�cally, we begin with an initial solution ( U; V) of a certain size r . If such

a solution is not a local minimum, then we can perform local descent to arrive

at a critical point, which needs to satisfy condition 1 of the corollary. We can

then verify if condition 2 is satis�ed, in which case we know that we cannot

further reduce the objective by increasing r . Alternatively, if condition 2 is

not satis�ed, then we know that there exists a descent direction (u ; v) such

that if we augment U by
p

� u and V by
p

� v, where � is the optimal step size

computed in closed form, we can reduce the objective. We can then repeat the

process for a factorization of size r + 1 until the conditions in Corollary 1 hold,

which is guaranteed to happen for �nite r , as shown in [18].

2VisionLab/Center for Imaging Science, Johns Hopkins University
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2.2.2 Details on local optimization strategies

L OCAL DESCENT

Due to the non-differentiability of the regularization term � 
 , we cannot

use optimization methods that require smoothness of the cost function such

as simple gradient descent. However, it is possible to compute the proximal

operator of � 
 w.r.t. to U and w.r.t. V , which allows us to de�ne an alternating

proximal gradient descent strategy to minimize the following function

h(U; V) = `(X; � r (U; V)) + � � 
 (U; V)

=
1
2

kX � UVT k2
F + �

rX

i =1

kUi k2(
 kVi k1 + (1 � 
 )kVi k2)
(2.11)

with respect to U and V, i.e. the factorization size r is kept �xed in this step.

Using the de�nition and basic properties of the proximal operator we have:

� For all V , the proximal operator of the continuous convex mapping U 7!

� 
 (U; V) is de�ned by

prox � 
 (�;V )(W) = arg min
U

� 
 (U; V) +
1
2

kU � Wk2
F

=
X

i

arg min
Ui

� 
 (Ui ; Vi ) +
1
2

kUi � Wi k2
2

=
X

i

prox � 
 (�;Vi )(Wi );

(2.12)

i.e. requiring the computation of the proximal operator of the `2 norm.

� For all U, the proximal operator of the continuous convex mapping V 7!

17



CHAPTER 2. GLOBAL OPTIMALITY FOR THE SDL PROBLEM

� 
 (U; V) is de�ned by

prox � 
 (U;�)(W) = arg min
V

� 
 (U; V) +
1
2

kV � Wk2
F

=
X

i

arg min
Vi

� 
 (Ui ; Vi ) +
1
2

kVi � Wi k2
2

=
X

i

prox � 
 (Ui ;�)(Wi )

(2.13)

i.e. requiring the computation of the proximal operator of a weighted sum

of `1 norm and `2 norm.

From [18, Proposition 5], we know that

prox 
 k�k1+(1 � 
 )k�k2
(y ) = prox (1� 
 )k�k2

(prox 
 k�k1
(y )) : (2.14)

This relation is useful since we know the proximal operators of the `1 and `2

norms:

prox � k�k2
(y ) =

�
1 �

�
kyk2

�

+

y (2.15)

and

(prox � k�k1
(y )) i = sign(y i )( jy i j � � )+ 8 i: (2.16)

These remarks on the proximal operators prox � 
 (U;�) and prox � 
 (�;V ) allow an

ef�cient implementation of an alternating proximal gradient descent algorithm

to solve minU;V h(U; V); at each iteration we are guaranteed a decrease of the

objective but this alternation scheme comes without theoretical guarantees on

convergence.

A PPROXIMATION OF THE POLAR VALUE

Ideally, in the previous step we would use a descent strategy which is guar-

anteed to converge to a local minimum and not only to a critical point. Once

we are at a local minimum we know from Theorem 1 that we only need to

check whether this local minimum contains a zero slice (some i 2 [r ] such that
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(Ui ; Vi ) = (0 ; 0)) but unfortunately in the case of non-convex optimization, usual

minimization strategies only guarantee convergence to a critical point which

can be a local minimum, local maximum or a saddle point. Therefore we need

to have an alternative test for optimality which applies to all critical points.

From Corollary 1 we know that the polar value tells us whether there exists a

descent direction that allows to further decrease the objective or whether we

are at the global optimum.

If we substitute in problem (2.7) the de�nition of the SDL rank-1 regularizer,

we get the following problem:

max
u;v

u T Zv s.t. kuk2(
 kvk1 + (1 � 
 )kvk2) � 1 (2.17)

for some �xed matrix Z .

Examining problem (2.17) we remark that we can eliminate one of the vari-

ables by noticing that at the optimum we obtain the optimal u � as u � = Z v �

kZ v � k2
.

Therefore we have the following equivalent problem(s):

max
v 2 RN

vT Z T Zv subject to 
 kvk1 + (1 � 
 )kvk2 � 1 (2.18)

max
v 2 RN

kZvk2 subject to 
 kvk1 + (1 � 
 )kvk2 � 1 (2.19)

We note that in some cases it reduces to well known problems which we can

solve in closed form:

� 
 = 0: v � = top eigenvector of H = Z T Z.

� 
 = 1: v � = ei � where i � = arg maxi kZ i k2 and ej denotes an element of

the canonical basis of RN .

For other cases of 
 , i.e. for all 
 2 (0; 1), however we do not have a closed form

solution and need to de�ne an optimization scheme to solve the non-convex po-

lar problem. There are several iterative approximation methods we can de�ne

for one of the equivalent formulations above:
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� projected power iteration : given a diagonalizable matrix H and an initial

vector v0, the power iteration method is de�ned as:

vk+1 =
H vk

kH vkk2

and converges to the top eigenvector/eigenvalue of H (under some mild

assumption on the initial vector v0). Similarly to [8], we replace the renor-

malization in the recurrence relation (the projection onto the Euclidean

ball) by a projection on our constraint set to obtain the following relation:

vk+1 =
H vk

PC(H vk)
(2.20)

where C = f v : 
 kvk1 + (1 � 
 )kvk2 � 1g and the projection onto C, PC,

is obtained by iteratively solving the proximal operator of the mapping

v 7! 
 kvk1 + (1 � 
 )kvk2.

� (accelerated) proximal gradient ascent : We can rewrite the polar problem

using the indicator function �:

max
v 2 RN

kZvk2
2 � � f 
 kv k1+(1 � 
 )kv k2 � 1g (2.21)

and use the proximal gradient algorithm where the proximal operator of

�C is simply the projection onto the set C. An acceleration can be achieved

by adding an extrapolation step which translates as described in [29].

� alternating maximization (or generalized power iteration) : Instead of de-

riving the optimal u � from the result v � of the optimization over v, we

optimize iteratively over both variables and alternate between the two

steps

1. u k+1 = Z vk
kZ vk k2

2. vk+1 = arg maxv hZ T u k+1 ; v i subject to 
 kvk1 + (1 � 
 )kvk2 � 1,
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where step 2 is a convex problem which can be solved ef�ciently by bisec-

tion search. This alternating maximization is an adaptation from the

method proposed in [21] in the context of sparse principal component

analysis.

We compared these three strategies on two types of randomly generated ma-

trices: (1) Gaussian matrix and (2) random matrix with a sparse eigen-vector

(different from the top eigen-vector). The results are reported in Figures 2.1

and 2.2 and suggest that the proximal gradient algorithm performs best in both

scenarios, even for a small number of random initializations. However, repeat-

ing this experiment several times, the alternating maximization yields similar

performance as the proximal gradient method. The projected power iteration

breaks down for in the case of a Gaussian matrix with dense eigenvectors.

Instead of generating a large number of random initializations, another

strategy is to use spectral initialization, i.e. take the eigenvectors of H = Z T Z,

since we are trying to solve a generalized eigenvalue problem. We do not claim

that the solutions to the generalized eigenvalue problem can be expressed in

terms of these eigenvectors, but the empirical results we obtain with this ini-

tialization strategy on small-scale problems are satisfactory. Indeed on Figure

2.3 we can see that for both proximal gradient and alternating maximization

the spectral initialization leads to similar or better results than using as many

random initializations.

Following these results we choose to keep the accelerated proximal gra-

dient and alternating maximization and spectral initialization for our meta-

algorithm. Once the polar problem is solved, the polar value is compared

to 1: if it is larger, then we append the solution ( u � ; v � ), scaled by a scalar

� � = (u � )T (X � ~U ~V T )v � � �� 
 (u � ;v � )
ku � (v � )T k2

F
> 0 which guarantees a decrease of the objective,

to the current factorization.
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(a) 50 random initializations.

(b) 100 random initializations.

(c) 250 random initializations.

Figure 2.1: Random Gaussian matrix H = Z T Z 2 R50� 50 with small condition
number ( � 1:1). The x-axis corresponds to the sparsity trade-off parameter 
 .
The y-axis gives the value of the cost function u T Zv. All convergence results
are represented as cyan crosses, the largest solution is marked by blue circles.
Left: projected power iteration. Middle: accelerated proximal gradient. Right:
alternating maximization.
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(a) 50 random initializations.

(b) 100 random initializations.

(c) 250 random initializations.

Figure 2.2: Sparse eigenvector matrix H = Z T Z 2 R50� 50 with small condition
number ( � 1:1). The x-axis corresponds to the sparsity trade-off parameter 
 .
The y-axis gives the value of the cost function u T Zv. All convergence results
are represented as cyan crosses, the largest solution is marked by blue circles.
Left: projected power iteration. Middle: accelerated proximal gradient. Right:
alternating maximization.
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(a) 50 random initializations. (b) 100 random initializations.

(c) 250 random initializations.

Figure 2.3: Relative difference between the best solution found with spectral
initialization ( 50 eigenvectors of random H = Z T Z 2 R50� 50) and the best solu-
tion found with random initializations. For each pair of plots, left: accelerated
proximal gradient, right: alternating maximization. (red: mean difference;
magenta: median difference, taken over 10 experiments).
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2.3 Analysis of the polar problem for SDL

In this part we will provide some intuition about the meaning of the polar

problem for our overall SDL problem and analyze it as a non-convex optimiza-

tion problem with a conjectured small number of local minima.

The polar problem that arises in the analysis of the non-convex optimiza-

tion problem of structured matrix factorization is itself an optimization prob-

lem which can be more or less easily solved. Indeed the problem dif�culty

depends on the rank-1 regularizer � . For instance, if � (u ; v) = kuk2kvk2, then

the problem reduces to �nding the largest eigenvector of Z T Z whereas it has

been shown that for � (u ; v) = kuk1 kvk1 the problem is NP-hard [20].

The condition on the polar value can be understood as a general higher-

order optimality condition in the sense that if we are at a saddle point (of the

optimization problem over (U; V; r)) it allows to �nd a descent direction; it is a

higher order non-smooth saddle point problem. For instance in the low-rank

matrix factorization case ( � (u ; v) = kuk2kvk2) we can show the following result:

Proposition 1. In the low-rank matrix factorization case,

min
U;V;r

f (U; V) = kX � UVT k2
F + �

rX

i =1

kUi k2kVi k2 (2.22)

the condition 
 � (Z ) � 1 on the polar function at Z = � 1
� r � r `(X; � r (U; V)) is

equivalent to the second order optimality condition of the initial problem (2.22).

Proof. Let r = rank (X ). We know that problem (2.22) is equivalent to

min
U;V;r

~f (U; V) = kX � UVT k2
F +

�
2

rX

i =1

kUi k2
2 + kVi k2

2 (2.23)

A formal derivation for this equivalence for can be found in [5,7].

We de�ne W :=

"
U

V

#

and h : RD + N )� (r +1) ! R+ such that h(W) = ~f (U; V)
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and � :=

"
� U

� V

#

2 R(D + N )� (r +1) .

Using standard matrix derivations, we obtain an expression of the Hessian of

h: r 2h(W)[� ; �] = k� UV T + U� T
V k2

F + 2hUVT � X; � U � T
V i + � k� Uk2

F + k� V k2
F .

Let ( ~U; ~V) � ~W 2 R(D + N )� (r +1) be a local minimum of h. The second-order

optimality condition is then: r 2h( ~W)[� ; �] � 0. We know from theorem 1 that

it is a global optimum if for some i 2 [r ], ( ~Ui ; ~Vi ) = ( 0; 0). So the second-order

optimality condition reduces to

2h~U ~V T � X; uv T i + � kuk2
2 + kvk2

2 � 0

which is equivalent to the condition on the polar function corresponding to

problem (2.23).

This result in the Low-Rank Matrix Factorization case, which is a bound-

ary case of our Sparse Dictionary Learning problem (2.5), gives us an intuition

of the meaning of the polar problem for the more general case. This general

formulation with 
 2 (0; 1) has no closed-form solution but we found some em-

pirical evidence that the polar problem for this general SDL problem still has

a structured optimization geometry as detailed later on.

We recall that we previously derived an equivalent formulation, (2.19), of

the initial polar problem (2.17). A �rst attempt to solve this constrained ex-

trema problem (2.19) approximately is to use one of the previously introduces

initialization and optimization strategies and to pick the largest solution. The

question however is how dif�cult is it to reach the global solution, or how many

local maxima does this problem have? If this number does not explode expo-

nentially in the dimension one might hope to �nd (a good approximation of)

the global optimum by �nding suf�ciently many local maxima by local ascent

strategies and picking the largest one.
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2.3.1 Empirical estimation of the optimization

geometry

To get a �rst intuition of the dif�culty of this problem, we study the prob-

lem for different values of 
 2 (0; 1) and on randomly generated matrices Z

of rather small dimensions ( D; N � 50). A �rst observation is that, as ex-

pected from the non-convexity of the problem, there always are multiple criti-

cal points that the optimization method converges to (see Figures 2.1 and 2.2).

To get a better estimation of the number of local optima we run the approxi-

mate solvers on O(N 2) random initializations 3. The optimization strategy used

to obtain the results in Figure 2.4 is an accelerated proximal gradient ascent,

where the proximal operator is simply the projection onto the constraint set

f v 2 RN : 
 kvk1 + (1 � 
 kvk2 � 1g. Alternatively we also used the alternating

maximization scheme over u and v which lead to very similar results. We drew

the matrix Z in two different ways: (1) from a centered Gaussian distribution

with covariance � = I and (2) such that Z T Z has a sparse eigenvector that

does not correspond to the largest eigenvalue. We also controlled the condition

number of the matrix by choosing different values for the reciprocal condition

number rc 2 (0; 1] (de�ned by the ratio of the smallest singular value over the

largest singular value of the matrix Z ). In fact, for the boundary case 
 = 0,

we know that the convergence speed of iterative optimization methods, for in-

stance by using the power method, depend on the eigen-gap of Z T Z and there-

fore the conditioning of the matrix plays a role. What we observe on Figure

2.4 is that the number of local optima that we �nd after many random initial-

izations ( 2N 2) appears to be bounded linearly in the dimension N (we removed

the sign ambiguity in the reported results, including the sign in the counting

leads to an empirical bound of 2N ). We know that for 
 = 0 we have exactly

1 local minimum (the top eigenvector of Z T Z which is therefore globally min-

3Assuming that there are of the order N local minima, that they are uniformly distributed
over the set of feasible points and that they have basins of attraction of similar size, we need
O(N log(N )) initializations to visit all of them at least once, according to the coupon-collector's
problem.
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imal) and for 
 = 1 there are N local minima (every element of the canonical

basis of RN ). Letting tend 
 to each of these boundary cases we observe that

the number of detected local minima is consistent with these known results

which might suggest that the results for the remaining cases are good esti-

mates of the actual number of local minima. However we cannot exclude the

possibility of further local minima which have very small basins of attraction

and are therefore unlikely to be reached from an arbitrary point. Addition-

ally the choice of the optimization method might bias the empirical estimation

of the optimization geometry. The latter has been pointed out by [16] in the

case of under-determined linear regression and separable linear classi�cation

problems. A more thorough empirical and theoretic study of the optimization

geometry of the studied polar problem is left for future work.

2.3.2 Restricted necessary optimality conditions

With these �rst empirical results in hand we now go on to the theoretical

analysis: �rst we will give a geometric interpretation of the problem and its so-

lutions, then we will derive an equivalent formulation of the SDL polar problem

which on the one hand allows a simpler derivation of second-order optimality

conditions and on the other hand allows to draw connections to the well-known

problem of sparse PCA.

The objective function of (2.18) is a quadratic function and the constraint

is an interpolation of the `1 and `2 norm balls as illustrated (in blue) in Figure

2.5. We know that the solutions of this constrained extrema problem lie on the

boundary of the constraint. Furthermore, at �rst-order (FO) optimal points,

the constraint boundary is tangent to the level surface. However, since we want

to estimate the number of local maxima and the problem being non-convex, we

are interested in second-order (SO) optimal points. The SO optimality condi-

tion depends on the curvature of the surface of level and constraint set and

informally it requires the constraint surface to have strictly larger curvature

at a �rst-order optimal point than the level surface for it to be second-order
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Figure 2.4: Estimated number of local maxima of the SDL polar problem ( y-
axis) for different problem sizes as a function of the dimension N (x-axis). Top:
H = Z T Z where each Z i � N (0; I ). Bottom: H is generated such that it has at
least one sparse eigenvector using a similar strategy as [21]. For each plot, 10
matrices with a �xed condition number were generated per dimension and the
problem solved by accelerated proximal gradient ascent. Left to right column:
results for matrices with reciprocal condition number equal to 0.1, 0.5 and 0.9
respectively.
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optimal. An example in R2 is given in Figure 2.5. Due to the non-differential `1

term in the constraint and the boundary case 
 = 1 we have to take some pre-

cautions to formalize this informal characterization which uses the surfaces'

curvatures. Before we give the formal expression of the FO and SO optimality

conditions we derive an equivalent formulation of the SDL polar problem in

Proposition 2.

(a) (b)

Figure 2.5: Level and constraint sets of an SDL polar problem in R2. FO
optimal points are indicated by small circles. (a) The FO optimal points are
also second-order optimal; (b) The FO optimal points violate the SO optimality
condition.

Proposition 2. The sparse dictionary learning polar problem is equivalent to

solving the optimization problem

min
v 2 RN

kv k2=1


 kvk1 + 1 � 

kZvk2

(2.24)

where Z = � 1
� r � `(X; �( U; V)) 2 RD � N .

Proof. We start with formulation (2.19) of the polar problem derived earlier.

Using a result on constrained extrema that states that the solutions of con-

strained maximization of a convex function are located at the boundaries of
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the constraint set we have:

max
v 2 RN

kZvk2


 kvk1 + (1 � 
 )kvk2
subject to 
 kvk1 + (1 � 
 )kvk2 = 1 (2.25)

Assuming that null (Z ) 6= RN , we can add the constraint v =2 null (Z ). The

positivity of the objective function and invariance to the scaling of v allow us to

write

min
v 2 RN


 kvk1 + (1 � 
 )kvk2

kZvk2
subject to kvk2 = 1 (2.26)

The objective function of (2.26) is a convex combination of the objective func-

tions of the variational de�nition of the k � k1;2 and k � k2;2 operator norms on Z .

We point out that [19] use this formulation to compute approximate solutions

for the well-known sparse PCA problem [39] by using an algorithm designed

to solve non-linear eigenvalue problems (the problem being non-linear in the

eigenvector). This connection to the sparse PCA problem provides an addi-

tional motivation to study the SDL polar problem more deeply to understand

its optimization landscape.

We will now present the derivations of �rst- and second-order optimality

conditions for problem (2.24) to further develop the previously mentioned ge-

ometric intuitions for this polar problem. In order to eliminate problems due

to the non-differentiable `1 term, we compute the gradient and Hessian of the

objective function for a �xed support � � [N ] and signature s 2 f� 1; 0; 1gN .

Let Z 2 RD � N and v 2 RN with support � and signature s, without loss of

generality we can assume v =

"
v1

0

#

=

"
~v1 � s1

0

#

where s =

"
s1

0

#

. We

also partition matrix Z accordingly: Z = [ Z1 Z2]. We denote S1 = diag(s1),

H = Z T Z =

"
H11 H12

H21 H22

#

and ~H11 = S1Z T
1 Z1S1. With these notations in hand,

we give the following expression for the �rst-order and second-order optimality

conditions:
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Proposition 3. Let Z 2 RD � N and v 2 RN with support � and signature s. v

is a local minimum of (2.24) if it satis�es the following conditions:

1) (FO� ) ~H11~v1 =
�
�

(
 1 + (1 � 
 ) ~v1) (2.27)

2) (FO� c ) H21S1~v1 2
h
�

�

�

;
�

�

i N �j � j
(2.28)

3) (SO� ) �
�


 2

� 2
(1T � )2 +

1 � 

�

�
� � T ~H11�

for all � 2 T~v1 Sj � j� 1 such that k� k2 = 1

(2.29)

where we de�ned � = ~vT
1

~H11~v1 and � = 
 (1T ~v1) + (1 � 
 ). Given a manifold M ,

TuM denotes the tangent space at u 2 M to the manifold.

The proof of this proposition uses notions and results of differential geome-

try and manifold optimization from [1] and is given in the Appendix.

The FO necessary condition ( FO� ) expresses the previous geometric obser-

vation that at a �rst-order optimal point, the normals to the surface of the

constraint and level sets are parallel. And in the boundary case 
 = 0 we re-

cover the result that the solution to (2.24) is given by the top eigen-vector of H .

However for other choices of 
 , a geometric interpretation of condition ( SO� ) in

terms of curvature of the surface of level and constraint sets is less straight-

forward. But these optimality conditions on the (Riemannian) gradient and

Hessian could possibly be used to bound the number of local optima of the SDL

polar problem, by invoking a similar proof as in [14] for the problem of tensor

decomposition. This direction is left for future work.

2.4 Extension to discriminative sparse

dictionary learning

In this section we present a potential extension of our SDL formulation to

discriminative SDL and explain how the theoretical results and our algorithm
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easily extend to this new problem, using the fact that the matrix factorization

mapping � r can be chosen different from the regular matrix-matrix product

(UVT ).

Learning a sparse dictionary and decomposition directly from the data has

several different applications, for instance classi�cation. In order to classify the

data, a possibility is to consider the sparse codes as a nonlinear transformation

of the data and to learn a classi�er on these features. Indeed it is admitted that

sparse codes are well-suited for classi�cation of static data ( [24] and [33] also

show how they can be used for classi�cation of time-series data). Since these

features do not depend on some pre-de�ned dictionary but on a data-dependent

dictionary it seems natural to “design” the dictionary and the sparse codes for

the classi�cation task, i.e. to make them discriminative. Given a training set

with known class labels, this can be achieved by adding a discriminative loss

term to the model, as it has been proposed in [26]. The authors call their model

Supervised Dictionary Learning to emphasize the explicit use of the class labels

during dictionary learning as opposed to an unsupervised dictionary learning

approach.

In order to integrate this idea of learning discriminative sparse codes into

the SDL matrix factorization framework we assume that the data can be sep-

arated by a linear classi�er in the latent sparse coding coef�cient space. Con-

sider that there are L different classes and that for each data point x i we know

its class label yi ; without loss of generality we can assume yi 2 [L] for all i 2 [N ].

Given the sparse code V<i> 2 Rr of x i and a classi�er f W; bg 2 RL � r � RL ,

the predicted label ŷi can be de�ned via the softmax function (assuming ŷi =

arg maxl2 [L ] W T
<l> V<i> + bl ). Under these assumptions we can naturally use the

cross-entropy loss on the softmax classi�er in our objective function:
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min
U2 RD � r

V 2 RN � r

W 2 RL � r

b2 RL

;r 2 N

1
2

kX � UVT k2
F + �

NX

i =1

K(yi ; f (V<i> ; f W; bg))

| {z }
= `(( X;y );� r (U;V;W );b)

+ �
rX

j =1












"
Uj

Wj

#










2

(
 kVj k1 + (1 � 
 )kVj k2)

| {z }
=� 
 (U;V;W )

(2.30)

where f (�; f W; bg) = W T
<l> � + bl is the score function and K the cross-entropy

loss.

This model �ts into the matrix factorization framework with the following ele-

ments:

� The elemental mapping

� : RD � RN � RL ! R(D + L )� N

(u ; v; w ) 7!

"
uv T

wv T

#
(2.31)

� The r -element factorization mapping

� r : RD � r � RN � r � RL � r ! R(D + L )� N

(U; V; W) 7!
rX

i =1

� (Ui ; Vi ; Wi )
(2.32)

� The rank-1 regularizer

� 
 : RD � RN � RL ! R+

(u ; v; w ) 7!












"
u

w

#










2

(
 kvk1 + (1 � 
 )kvk2)
(2.33)

� The loss function `((X; y ); Z; b) is differentiable and jointly convex w.r.t.
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(Z; b). (Here we consider that the bias b as an auxiliary variable which

is not part of the factorization; the theoretical framework of our main

reference [17] covers this case, but for simplicity we omitted this detail in

theorem 1).

Proposition 4. Solving the polar problem for the sparse dictionary learning

problem (2.5) is equivalent to solving the polar problem for the discriminative

sparse dictionary learning (2.30).

Proof. If we de�ne ~u =

"
u

w

#

and adjust the problem dimensions, then we

obtain the same formulation of the SDL polar problem as in (2.17).

A motivation for integrating the classi�er in the sparse dictionary learning

matrix factorization framework is twofold: this additional variable does not

make the optimization scheme more dif�cult to solve than the regular SDL for-

mulation as shown above and it allows to make statements about the optimal

size for the dictionary trained for a discriminative (and also reconstructive)

task. Indeed, when reviewing the literature on classi�cation via sparse coding

the heuristics for the dictionary size vary from under-completeness (to prevent

over-�tting, for instance [26]) to larger dictionaries (if the dictionary is also re-

quired to be reconstructive [31]) and the dictionary size is then also chosen via

cross-validation which can come at a high computational cost.

However, empirically validating our model on synthetic data and developing

some intuition on the formulation's sensitivity to changing parameters turned

out to be challenging because of the dif�culty to generate data such that we

know the joint ground truth f U� ; V � ; W � ; b� g, or at least a good proxy of it.

Furthermore the impact of the inexact polar solutions (except for the boundary

cases 
 2 f 0; 1g is not clear yet and still needs to be understood in the regular

SDL case. And we conjecture that, in order to obtain interpretable results, we

need to add a positivity constraint on the coding variables to guarantee a linear

classi�er W on these variables.
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3 Subspace Clustering and

Sparse Dictionary Learning
In this chapter we review two state-of-the-art methods for subspace cluster-

ing, belonging to the broader class of spectral methods. They promote differ-

ent structures to provide compact representations of the data (sparsity or low-

rank) which allow to recover a representation of the low-dimensional structure

of the data drawn form multiple subspaces by �nding a speci�c decomposition

over a self-expressive dictionary (i.e. the data matrix serves as dictionary).

As pointed out in the introduction, both sparse dictionary learning and sub-

space clustering assume the same data model and we will now position our SDL

model relatively to the two previously mentioned subspace clustering methods

and demonstrate how subspace clustering can be achieved with our formula-

tion while providing additional information on the optimality of the dictionary

size w.r.t. the generating factorization size.

3.1 Subspace clustering by sparse or low-

rank representation

Given a large amount of high-dimensional data, stacked as columns of a

matrix X 2 RD � N (for instance D could be the number of pixels in an image

and N the number of images), it is often preferable to invoke a low-dimensional

representation of the data or to cluster the data such that each cluster is well

approximated by a low-dimensional subspace in order to perform different data

processing and learning tasks more ef�ciently. In computer vision for instance

these could be denoising, classi�cation or inpainting.
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If one assumes that the data is well represented by a single low-dimensional

subspace, then a classical approach to dimensionality reduction is Principal

Component Analysis (PCA). This method and its variants perform well as long

as the data can indeed be approximated by a single subspace. But if the struc-

ture becomes more complex, i.e. the data rather belongs to multiple subspaces

as illustrated in Figure 3.1 and is potentially corrupted by noise or outliers,

more advanced techniques of �tting the data to such low-dimensional struc-

ture are required. Given such a collection of datapoints coming from multiple

subspaces, the subspace clustering problem consists of recovering the follow-

ing information: number and dimensions of the subspaces, a basis for each

subspace and the segmentation of the data, ideally without requiring any prior

on the number and dimensions of the subspaces.

Figure 3.1: Data X = [ x 1 : : : x N ] lies on a union of linear low-dimensional
subspacesS = ( S1 [ : : : [ Sn ) � RD .

One way to tackle this problem is to �nd a self-expressive representation

of the data as illustrated in Figure 3.2 and to use this representation to infer

the clustering of the points w.r.t. the different subspaces: given X 2 RD � N ,

one can assume the self-expressiveness property and seek a matrix C 2 RN � N

such that X = XC . To prevent the trivial solution C = I one needs to en-

force diag(C) = 0 . which does not contribute to the aim of recovering the low-
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dimensional structure of the data, one enforces speci�c constraints onto this

matrix C which translate different assumptions on the form of the data, for

instance sparsity and low-rank. We will consider these two different situations

as proposed in [11] and [12,23] respectively.

Figure 3.2: Data X = [ x 1 : : : x N ] serves as a self-expressive dictionary. The
coef�cient matrix C is constrained to be zero on its main diagonal.

3.1.1 Sparse subspace clustering

The idea behind the sparse subspace clustering formulation (SSC) is the

following: a datapoint x can be approximated by a linear combination of the

other datapoints from the set. Such a representation is not unique – there

are in�nitely many solutions –, but if one requires it to be sparse and if the

subspaces are well arranged then it is likely that only points lying in same

subspace asx will be selected to represent the given point or at least most of the

selected points will belong to the same subspace as x. Such a representation

is referred to as subspace-sparse. Therefore one gets to solve the following

problem:

min kCk0 subject to X = XC and diag (C) = 0 (3.1)

where the second constraint prevents the trivial solution C = I , i.e. each point

being represented by itself. This problem is shown to be NP-hard due to the

pseudo-norm `0 but the classical tight relaxation using the sparsity inducing `1
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norm allows to solve a convex problem [11]:

min kCk1 subject to X = XC and diag (C) = 0 (3.2)

The above formulation requires an exact reconstruction of the data ( X = XC )

but if one assumes that the data is contaminated by some random noise E,

then it is preferable to minimize the reconstruction error kX + E � XC k, which

gives the extension of SSC to the presence of noise:

min kCk1 +
�
2

kEk2
F subject to X = XC + E and diag (C) = 0 (3.3)

The authors of [11] show that under appropriate assumptions on the distribu-

tion of the data and the con�guration of the subspaces the solution of the above

formulation is subspace-sparse and can therefore be used to build a similarity

graph to deduce the segmentation of the data.

3.1.2 Low-rank subspace clustering

Instead of arguing in terms of sparse representation, one can consider that

if the subspaces are well arranged such that the rank r of the data is equal to

the sum of the dimensions of the subspaces, therefore potentially r < minf D; N g

(if D and N are indeed suf�ciently large). This leads to the following non-

convex problem

min rank (C) subject to X = XC (3.4)

which can be relaxed into a convex problem by noticing that similarly to the

`0=`1 substitution, the nuclear norm k � k� is a convex envelope for the matrix

rank function 1.

If in addition one assumes the data to be corrupted by random noise, i.e. X

is the sum of the clean data A and the noise E, the following convex problem

1Given a square or rectangular matrix M the nuclear norm is de�ned as the sum of the
singular values of M , i.e. kM k� =

P r
i =1 � i , where the singular values are obtained from the

singular value decomposition of M : M = Udiag(� )V T .
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can be solved to get a subspace-sparse representation of the data under the

appropriate assumptions.

min kCk� +
�
2

kEk2
F subject to A = AC and X = A + E (3.5)

Under appropriate assumptions the authors of [12] show that for clean data

and in the presence of noise the problem can be solved in closed form.

These two methods both yield state-of-the-art results for subspace cluster-

ing for clean as well as corrupted data and only require fairly simple tools

from optimization and linear algebra. But their major drawback lies in their

complexity in the number of signals. And the self-expressiveness assumption,

while leading to ef�cient clustering methods, does not provide any information

on the optimality of the decomposition w.r.t. the set of sparse decompositions

f (D; C; r ) 2 RD � r � Rr � N � N� : X = DC g since the self-expressiveness assump-

tion implies the use of the fairly large dictionary D = X .

Given our analysis from the previous chapters we can therefore ask whether

our SDL matrix factorization framework can provide such information for the

problem of subspace clustering. In other words we are interested in the “com-

pactness” of the factorization in the problem setting of subspace modeling and

clustering.

3.2 Subspace clustering by sparse dic-

tionary learning

The underlying assumptions for sparse dictionary learning are to some ex-

tend related to those of subspace clustering: by attempting to sparsely decom-

pose the data over some (overcomplete) set of basis elements one implicitly as-

sumes that the data lies in a union of linear low-dimensional subspaces which

allows to express each signal as a linear combination of some basis elements of
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the subspace it belongs to, in other words one attempts to recover a subspace-

sparse representation. Hence, one choice for the dictionary is to form it as the

concatenation of such basis elements leading to subspace-preserving codes (de-

composition coef�cients) which are used to derive a similarity graph and the

segmentation of the data. The data model and its approximated decomposition

are illustrated in Figures 3.1 and 3.3.

Figure 3.3: Data X expressed as (sparse) linear combinations of subspace
speci�c basis elements ( B j , j 2 [n]).

The two previously presented models, SSC and LR-SC, can be considered as

special cases of this general formulation, where the signals are considered as a

concatenation of (overcomplete) subspace bases. The question now is whether

one can recover a more compact and still subspace-preserving decomposition of

the data by jointly learning the dictionary and decomposition coef�cients with-

out �xing the factorization size in advance. In other words, is there a matrix

factorization regularization function and associated structured matrix factor-

ization problem which allows to capture the speci�c low-dimensional structure
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of the data and to �nd an optimal generating factorization size? If one chooses

to drop the self-expressiveness in (3.3) and (3.5) in order to �nd an optimal

subspace-sparse representation of the data, one can obtain the following for-

mulations 2:

min
U;V

kUi k2 � 1 ;8 i

kVk1 +
�
2

kX � UVT k2
F (3.6)

min
U;V

kUi k2 � 1 ;8 i

kVk� +
�
2

kX � UVT k2
F (3.7)

For problem (3.7), since we want to �nd a compact factorization of the data into

U and V, instead of assuming only V to be low-rank, we can assume UVT to

have low-rank, leading to

min
U;V;r

kUVT k� +
�
2

kX � UVT k2
F (3.8)

We can now establish the link to our SDL formulation by using the well-known

variational form of the nuclear norm: given a matrix M 2 RD � N two variational

forms of its nuclear norm are de�ned as:

kM k� = inf
r

inf
U2 RD � r

V 2 RV � r

X = UV T

rX

i =1

kUi k2kVi k2 (3.9)

= inf
r

inf
U2 RD � r

V 2 RV � r

X = UV T

1
2

rX

i =1

kUi k2
2 + kVi k2

2 (3.10)

This alternative de�nition of the nuclear norm allows us to recover one bound-

ary case of our SDL model:

min
U2 RD � r

V 2 RN � r ;r 2 N

1
2

kX � UVT k2
F + �

rX

i =1

kUi k2kVi k2 (3.11)

2As before, we add the norm constraint on U to prevent unbounded solutions.
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which is equivalent to the rank minimization problem

min
Y 2 RD � N

1
2

kX � Yk2
F + � kYk� ; (3.12)

as showed in [30]. This convex low-rank minimization problem is known to

have a closed form solution. But it does not provide any information on the

data segmentation.

Similarly for problem (3.6), we use again the remark that constraining the

norm of the columns of U is equivalent to penalizing their sum:

min
U;V;r

1
2

kX � UVT k2
F + �

rX

i =1

kUi k2kVi k1 (3.13)

which corresponds to the second extreme case of our problem (2.5) ( 
 = 1). Here

again the varying factorization size leads to a (trivial) solution ( U = X; V = I )

which does not give any insight into the underlying structure of the data.

But since we assume that there exists a sparse decomposition for the data

X (by construction), we can interpolate these two problems to attempt to ob-

tain a compact (low-rank) and subspace-sparse factorization. In other words,

since our SDL matrix factorization formulation also involves optimizing over

the factorization size, by choosing a suitable regularization function, i.e. a suit-

able choice for the sparsity parameter 
 , one can attempt to recover the number

of subspaces, their dimensions and a basis for each subspace in form of a dic-

tionary as well as the representation of the data over this dictionary, i.e. the

segmentation of the data collection. If we denote the dimension of subspace Sj

by dj and if we have
P n

j =1 dj < N , then we expect the resulting factorization of

the data to be more compact as opposed to the self-expressive dictionary from

SSC, LRR or LR-SC.
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3.3 Experiments

With this framing of our SDL formulation w.r.t. two existing subspace clus-

tering methods we now proceed to the veri�cation of our claim on the recovery

of a compact subspace-preserving factorization of the data, i.e. for some value

for 
 can we perform subspace clustering while obtaining an optimal factoriza-

tion size?

First we will explain our data model, discuss our initialization strategy and

stopping criteria which are necessary due to the use of approximate polar solu-

tions and �nally we compare the results of our approach to existing subspace

clustering methods.

3.3.1 Preliminaries

SYNTHETIC DATA

We analyze our method by applying it on synthetic data: We generate sig-

nals according to two different models: (1) the collection of subspaces is in-

dependent3 and (2) the subspaces are disjoint 4. Requiring the subspaces to

be independent is a strong assumption but intuitively it makes the subspace

estimation and clustering easier. We choose these two data models since the

methods we are comparing our model to (SSC and LR-SC) give guarantees of

subspace recovery for these cases.

For each experiment we generate 100 signals per subspace in the ambient

spaceR30. Each subspace is of dimension R3. For model (1) we generate signals

from 9 independent subspaces, for model (2) we draw 12 subspace bases f U j g12
j =1

at random from a normal distribution 5.
3A collection of subspaces f Sj gn

j =1 is said to be independent if dim (
L n

j =1 Sj ) =
P n

j =1 dim (Sj )
where

L
denotes the direct sum operator. [11]

4A collection of subspaces f Sj gn
j =1 is said to be disjoint if every pair of subspaces intersect

only at the origin. [11]
5The generated subspaces are disjoint with probability 1.
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R EMARK ON THE CHOICE OF INITIALIZATION AND STOPPING CRITERION

Assuming that every step of our algorithm 1 is solved exactly, the algorithm

is guaranteed to converge to a global solution, starting from any initial fac-

torization. But as pointed out in Part 2 we cannot solve the polar problem

exactly and we therefore have to take this approximation error into account.

A phenomenon we observe throughout our experiments (on synthetic and real

data) is that the �nal factorization produced by the algorithm always contains

a lot of “small” factors with a vanishing rank-1 regularizer � 
 and some factors

with much larger � 
 (see Figure 3.4 for an example of the evolution of the ra-

tio between the smallest and largest rank-1 regularizer throughout the meta-

iterations of our algorithm using approximate polar solutions). This could be

due to numerical issues in any of the subroutines of the overall algorithm 6 but

it could also be the case that the global solution for our problem (2.5) indeed

contains many small rank-1 factors. An argument for the former is that when

looking at the low-rank matrix factorization case ( 
 = 0) for some matrix X

which is exactly low rank, the algorithm recovers the optimal solution (which

we also know in closed form), starting from an empty factorization, i.e. it op-

timizes over the successive polar directions. But if we corrupt each solution of

the polar problem with some small white Gaussian noise, we obtain a similar

behavior as in Figure 3.4, i.e. a very large factorization containing many small

additional factors as reported in Figure 3.5. In parallel we can compare the

evolution of the polar and objective functions, see Figure 3.6: in all cases the

polar and the objective functions have two stages of evolution: a fast decrease

until the factorization size reaches rdata and a very slow decrease throughout

the rest of the optimization.

These observations suggest that instead of de�ning the convergence crite-

rion for our algorithm on the polar value ( converged � (
 �
� 


(Z ) = 1 )) which is

likely to lead to an overestimation of the factorization size, we rather need to

6In Section 2.2 we empirically convinced ourselves that the non-convex polar problem has
a nice optimization landscape and that spectral initialization leads to good estimations of the
true solution.
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identify the “knee” in either the polar function or the objective which occur at

the generating factorization size rdata .

Figure 3.4: Ratio of smallest and largest rank-1 regularizer throughout the
meta-iterations of algorithm 1, initialized with the empty factorization. The
x-axis represents the factorization size r . We stop the algorithm once the polar
value drops below 1.1. Problem dimensions: X = UVT 2 R30� 900 and rank (X ) =
27, 
 = 0:17. The red dotted line corresponds to y = log(0:001). The ratios and
reference value y are reported in log-scale.

F ORWARD SDL MF

Our algorithm 1 is designed such that it can be initialized with any fac-

torization; for instance we could use initialization strategies used in other ap-

proaches to solve the problem: initialize the dictionary U with a random subset

of the data matrix X and random sparse coef�cients V. However we choose to

initialize the algorithm with a zero factorization and the algorithm will there-

fore run for at least r � iterations, where r � is the factorization size of the global

solution. This speci�c choice of initialization also appears in a similar algo-

rithmic setting in [4]. We will refer to this choice zero initialization for our

algorithm as forward SDL MF .
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(a) Ratio log(
� min



� max



) (for exact polar solu-

tions)

(b) Ratio log(
� min



� max



) (for noisy polar solu-

tions)

Figure 3.5: Ratio of smallest and largest rank-1 regularizer throughout the
meta-iterations of algorithm 1, initialized with the empty factorization. The
x-axis represents the factorization size r , which coincides with the meta-
iterations in this case. We stop the algorithm once the polar value drops below
1.1. Problem dimensions: X = UVT 2 R30� 900 and rank (X ) = 27. The red dotted
line corresponds to y = log(0:001).

3.3.2 Recovering the generating factorization size

The phase transition that we describe above for the polar and objective func-

tion in the case of noise-free low-rank data still appears for noisy full-rank data

drawn from either the independent or disjoint model as illustrated in Figure

3.7.

In order to get a better understanding of this sensitivity of the matrix fac-

torization formulation to the generating factorization size, denoted by rdata , we

consider the case 
 = 1 (i.e. explicit column regularization on U and sparsity

on V) for two reasons: �rst, as mentioned in the previous section, we can solve

the associated polar problem in closed form; this allows us to verify that the

described phenomenon is not due to approximation errors of the polar problem

discussed earlier, and second, we know a (trivial) global solution to the SDL

problem, X = XI N , but there might exist a more compact global solution which
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(a) Polar function, 
 = 0 :167. (b) Objective (log-scale), 
 = 0 :167.

(c) Polar function, 
 = 0 (noisy polar solu-
tions).

(d) Objective (log-scale), 
 = 0 (noisy polar
solutions).

Figure 3.6: Evolution of polar and objective functions (when using approx-
imate/noisy polar solutions). The x-axis represents the factorization size r ,
which coincides with the meta-iterations in this case. Problem dimensions:
X = UVT 2 R30� 900 and rank (X ) = 27. The red dotted line corresponds to
rdata = 27.

provides more information on the actual structure of the data and which can

potentially be discovered by the forward SDL MF algorithm. Intuitively such

a compact solution should resemble the generating factorization, for instance

in our synthetic data setting, these generating factors are Udata and Vdata which

we used to generate the data X . More formally, at each iteration we evaluate
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(a) Polar (b) Objective (log-scale)

Figure 3.7: Polar and objective function throughout the meta-iterations of
algorithm 1, initialized with the empty factorization. The x-axis represents
the factorization size r . Problem dimensions: X = UVT + E 2 R30� 960, (U; V) 2
R30� 36 � R960� 36, E ij � N (0; 0:12)) . 
 = 0:17. Data drawn from 12 disjoint low-
dimensional subspaces of dimension 3.


 � 1

�
� 1

� r � k `(X; � r (U(k) ; V (k)))
�

= 
 � 1

�
1
� (X � U(k)V (k)T

)
�

where we recall that


 � 1 (Z ) = max i kZ i k2. Therefore we are in fact evaluating the amplitude of the

largest direction in the residual, X � U(k)V (k)T
. Assume that k < r data and that

U(k) is the concatenation of k basis elements of the n subspaces. Without loss

of generality, assume that U(k) contains the bases of exactly m < n subspaces

S1; : : : ; Sm . Given U(k) , trying to sparsely decompose points X i which belong

to subspaces Sm+1 ; : : : ; Sn will then lead to large residuals since in non degen-

erate cases these points cannot be expressed as sparse linear combinations of

elements from subspaces S1; : : : ; Sm .

Let us illustrate this behavior on a small example: we take Udata as the con-

catenation of 12 bases in ambient space RD (generated at random) and Vdata as

a block-diagonal matrix such that each signal comes from one of the 12 sub-

spaces (each of dimension d = 3), i.e. rdata = 36. We report the results in Figure

3.8 where we observe that, up to a permutation of the columns, the factor V (36)

(i.e. after 36 iterations) is block-diagonal and each signal is encoded by 3 atoms.

This can be seen more explicitly if we compute the matrix A = jV jjV jT as an
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af�nity matrix and a variant of the average subspace-sparse recovery error7:

consider X i and denote J i = f k 2 [N ] : X i and X k are from the same subspace g.

ssr error =
1
N

NX

i =1

�
1 �

k(A i )J c
i
k1

kA i k1

�

This error becomes zero after rdata iterations of forward SDL MF, which trans-

lates as: the dictionary U(k) and sparse codesV (k) , k � rdata , are such that points

from different subspaces do not share any atoms.

In parallel we note a rapid decrease of the polar value for the �rst 36 itera-

tions and a stagnation throughout the remaining iterations. A similar behavior

also can be observed on the objective function which decreases much slower af-

ter the �rst 36 iterations. We expect this similarity since from [17] we know

that the distance of the objective function at a given point (U; V) to the global

optimum can be bounded by some linear function of the polar gap at this point

(i.e. 
 �
�
� 1

� r � `(X; �( U; V))
�

� 1). Similar results can be observed in the case of

unbalanced subspace dimensions (i.e. there exist (i; j ) 2 [n]2 such that di 6= dj ,

not reported here).

Even though we know that after rdata iterations we have not reached the

global optimum of our SDL formulation yet (the polar value is still larger than

1 in the given examples) there is empirical evidence that this forward selection

strategy for factorizing some matrix X (under the union of subspaces model)

allows to recover the generating factorization size in the case of independent

and disjoint subspaces.

In order to detect the “knee” on the polar graph (for instance on Figures

3.7 and 3.8a), providing a trade-off between the complexity (factorization size)

and the distance to the optimum (polar value), we minimize a simple objec-

7The subspace-sparse recovery error was introduced in the context of sparse subspace clus-
tering where the data is used as a self-expressive dictionary and ideally every point is to be
encoded exclusively by points from the subspace it belongs to. The ssr error measures the
fraction of `1-norm of the sparse representation which comes from points of other subspaces.
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