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MOTIVATIONS
Estimate the effect of tranexamic acid (TA) on
the in-ICU mortality among patients with trau-
matic brain injury (TBI), based on the observa-
tional database Traumabase®. This database in-
cludes 7,945 major trauma patients, of which 3,050
have traumatic brain injury, with 244 pre-hospital
and hospital measurements. The data is hetero-
geneous, being composed of both quantitative or
categorical variables. Major trauma is a public
health challenge and a major source of mortality
and handicap around the world.

Treatment effect (TE) estimation on observational
data is challenging when the data contains missing
values.
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CAUSAL INFERENCE WITH MISSING VALUES IN THE COVARIATES
Assumptions:

! Rubin’s potential outcome framework: W bi-
nary treatment, (Yi(t))w2{0,1} potential out-
comes.

⌧ = E[�i] = E[Yi(1)]� E[Yi(0)] (ATE),

X = (Xobs,Xmis) 2 Rn⇥p completely observed
confounders, e(x) = P(W = 1 |X = x) propen-
sity score, µw(x) = E[Y (w)|X = x] conditional
response surface.

! Missing values: R 2 {0, 1}n⇥p response in-
dicator matrix, X̃ = X � R + NA(1 � R) 2
(R [ NA)n⇥p observed confounders, e⇤(x, r) =
P(W = 1 |Xobs = x,R = r) generalized
propensity score [7].

! Classical causal inference assumptions: SUTVA,
unconfoundedness, overlap.

! Additional assumptions due to missingness:

– unconfoundedness⇤:
Yi(t) ?? Wi |Xi, Ri t 2 {0, 1}

– CIT or CIO: Wi ?? Xmis
i |Xobs

i , Ri or
Yi(t) ?? Xmis

i |Xobs
i , Ri t 2 {0, 1}

Method

! Doubly robust treatment effect estimator ⌧̂DR,⇤:

⌧̂DR,⇤ =
1

n

 
nX

i=1

µ̂1(X̃i)� µ̂0(X̃i)

+ Wi
Yi � µ̂1(X̃i)

ê⇤(X̃i)
� (1�Wi)

Yi � µ̂0(X̃i)

1� ê⇤(X̃i)

!

Propensity model (e⇤)
correctly specified:

E
"
1 �

Wi

e⇤(X̃i)
|Xobs

i , Ri

#
= 0

) ⌧̂DR,⇤ & ⌧̂IPW,⇤ are
consistent.

Outcome model (µ) cor-
rectly specified:

E ⇥
Yi� µ1(X̃i)|Wi = 1,

Xobs
i , Ri

i
= 0

) ⌧̂DR,⇤ is consistent.

! Parametric or nonparametric estimation of µt(·)
and e(·) ! interpretability of ⌧̂DR is the same.

! Nonparametric estimation using random
forests to handle heterogeneous data and miss-
ing values consistently under MCAR [4].

FUTURE RESEARCH
• Prove consistency / double robustness of the proposed

ATE estimator in cases other than MCAR (and for het-
erogeneous data).

• TBI is very heterogeneous in terms of clinical presenta-
tion, pathophysiology and outcome
! heterogeneous TE estimation.

• Long-term objective: developing a decision support
tool for clinical care management.

• Compare results to the soon to be published random-
ized controlled trial CRASH-3 results [1].
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See also R-miss-tastic,
a unified platform on
missing values methods
and workflows:

PROPOSAL
• Comparison of different TE estimators when co-

variates are partially observed, analysis of the
bias.

• Proposition of new double robust TE estimator,
based on random forests, handling incomplete
confounders.

• Application to critical care patient data.

SIMULATIONS
• i.i.d observations from

mixture model: X |C =
c ⇠ N (µc,⌃c), X 2 R10

• Logistic-linear model for
W 2 {0, 1}, Y 2 R,
satisfying or not CIT/CIO.

• MNAR (NA in
X1, . . . , X5 depend on
X6, . . . , X10).

• True ATE: ⌧ = 1.

• DR estimator ⌧DR,⇤.
• (Generalized) propensity

score (PS) estimation with
missing values:
– (a) imputation (mean, mice, LR

matrix factorization) + logistic re-
gression,

– (b) logistic regression handling
NAs (SAEM) [3],

– (c) random forest with missing in-
corporated in attributes (MIA) or
mean imputation.
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FIRST RESULTS

On IHDP data [2]:
! Simulated observa-

tional data from origi-
nal experimental data

! 6 quant. variables,
quant. outcome, bi-
nary treatment

! MCAR and MNAR
! Simulate Y w/ and

w/o CIO.
! Same methods as in

Simulations part.
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) Empirically, importance of CIO assumption increases with the amount of missing values, for all mechanisms.

On Traumabase:

! 12 identified confounders (continuous & discrete &
categorical).

! 3169 patients with traumatic brain injury.

! 12% treated patients.

! 0% - 23% of missing values (in confounders).

! Fully observed treatment and outcome.

! PS and outcome regression using random forests with
sample splitting and cross-splitting (R-package grf)

! 5 estimation approaches:
(a) Imputation (pca-based)
(b) Missing Incorporated in Attribute
(c) Low-rank approximation [5]
(d) Mean imputation
(e) Imputation (mice)
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ATE estimation on tbi patients

• Difference in percentage points be-
tween mortality rates in treatment
and control groups.

• No evidence for rejecting null hy-
pothesis of no effect of TA on
in-ICU mortality among TBI pa-
tients.

• Next: different TE w.r.t. severity of
TBI and extra-cranial lesions?


