

Doubly robust treatment effect estimation with incomplete confounders

IMKE MAYER^(1,2), JULIE JOSSE^(2,3), STEFAN WAGER⁽⁴⁾, TOBIAS GAUSS⁽⁵⁾, JEAN-DENIS MOYER⁽⁵⁾ ⁽¹⁾École des Hautes Études en Sciences Sociales, ⁽²⁾École Polytechnique, ⁽³⁾ Inria XPOP, ⁽⁴⁾ Stanford University, ⁽⁵⁾ Traumabase ® Group

Treatment effect estimation of tranexamic acid on mortality for traumatic brain injury patients

MOTIVATIONS

Estimate the effect of tranexamic acid (TA) on the in-ICU mortality among patients with traumatic brain injury (TBI), based on the observational database Traumabase®. This database includes 7,945 major trauma patients, of which 3,050 have traumatic brain injury, with 244 pre-hospital and hospital measurements. The data is heterogeneous, being composed of both quantitative or categorical variables. Major trauma is a public health challenge and a major source of mortality and handicap around the world.

Pre-hospital (and before treatment)

CAUSAL INFERENCE WITH MISSING VALUES IN THE COVARIATES

Assumptions:

 \rightarrow Rubin's potential outcome framework: W binary treatment, $(Y_i(t))_{w \in \{0,1\}}$ potential outcomes.

 $\tau = \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$ (ATE),

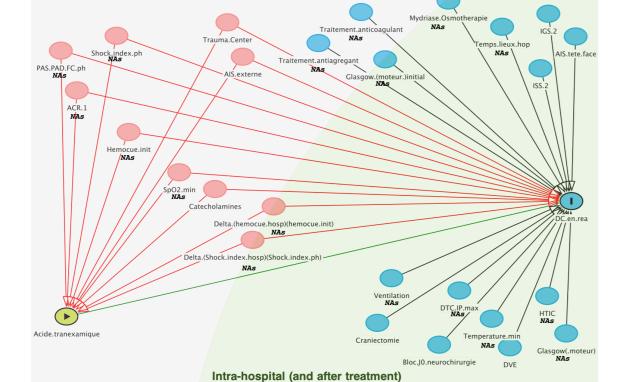
 $\mathbf{X} = (\mathbf{X}^{obs}, \mathbf{X}^{mis}) \in \mathbb{R}^{n \times p}$ completely observed confounders, $e(x) = \mathbb{P}(W = 1 | X = x)$ propensity score, $\mu_w(x) = \mathbb{E}[Y(w)|X = x]$ conditional response surface.

$$I = 1 \quad D = (0, 1)n \times n$$

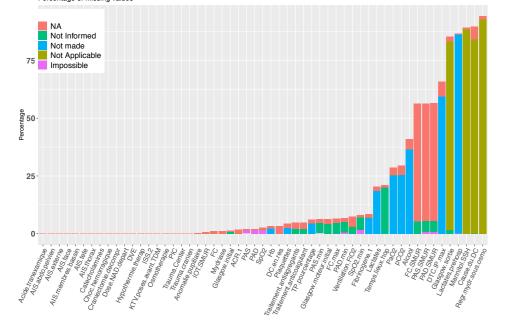
Method

 \rightarrow Doubly robust treatment effect estimator $\hat{\tau}_{DR,*}$:

$$\begin{aligned} \hat{\tau}_{DR,*} &= \frac{1}{n} \left(\sum_{i=1}^{n} \hat{\mu}_{1}(\tilde{X}_{i}) - \hat{\mu}_{0}(\tilde{X}_{i}) \right. \\ &+ W_{i} \frac{Y_{i} - \hat{\mu}_{1}(\tilde{X}_{i})}{\hat{e^{*}}(\tilde{X}_{i})} - (1 - W_{i}) \frac{Y_{i} - \hat{\mu}_{0}(\tilde{X}_{i})}{1 - \hat{e^{*}}(\tilde{X}_{i})} \end{aligned}$$



Treatment effect (TE) estimation on **observational** data is challenging when the data contains **missing** values.



PROPOSAL

• Comparison of different TE estimators when covariates are partially observed, analysis of the bias.

- \rightarrow Missing values: $\mathbf{R} \in \{0,1\}^{n \times p}$ response indicator matrix, $\mathbf{X} = \mathbf{X} \odot \mathbf{R} + NA(1 - \mathbf{R}) \in$ $(\mathbb{R} \cup NA)^{n \times p}$ observed confounders, $e^*(x, r) =$ $\mathbb{P}(W = 1 | X^{obs} = x, R = r)$ generalized propensity score [7].
- \rightarrow Classical causal inference assumptions: SUTVA, unconfoundedness, overlap.
- \rightarrow Additional assumptions due to missingness:
 - unconfoundedness*: $Y_i(t) \perp W_i \mid X_i, R_i \quad t \in \{0, 1\}$
 - CIT or CIO: $W_i \perp X_i^{mis} \mid X_i^{obs}, R_i$ or $Y_i(t) \perp X_i^{mis} \mid X_i^{obs}, R_i \quad t \in \{0, 1\}$

Propensity model (e^*) Outcome model (μ) corcorrectly specified: rectly specified: $\mathbb{E}\left[1 - \frac{W_i}{e^*(\tilde{X}_i)} | X_i^{obs}, R_i\right] = 0$ $\mathbb{E}\left[Y_{i}-\mu_{1}(\tilde{X}_{i})|W_{i}=1,\right.$

 $\Rightarrow \hat{\tau}_{DR,*} \& \hat{\tau}_{IPW,*}$ are consistent.

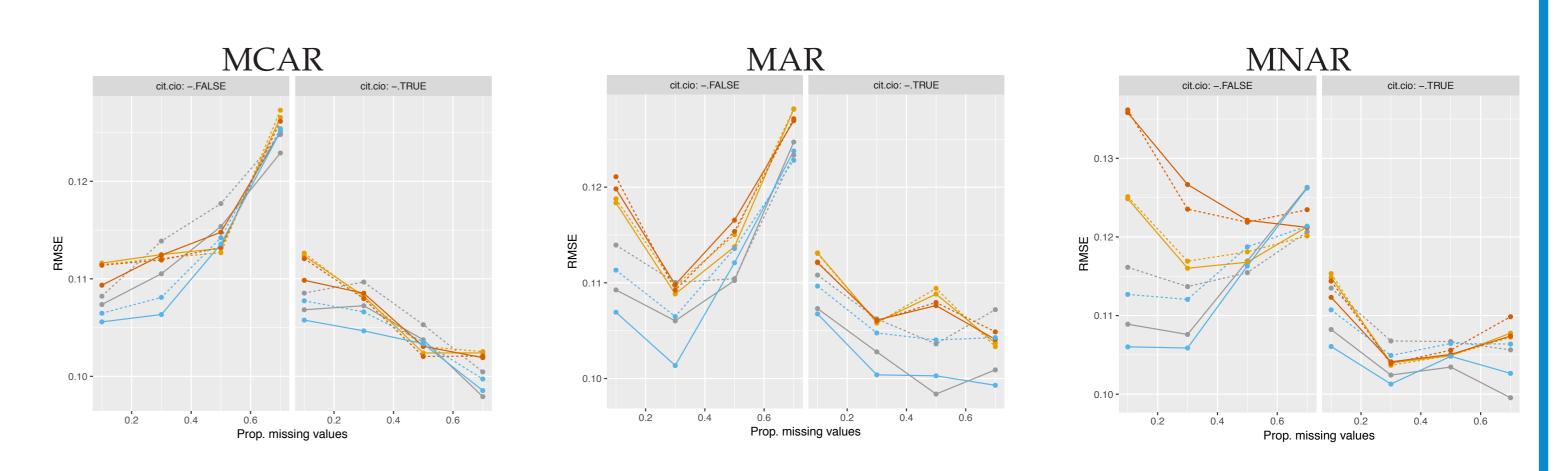
 $X_i^{obs}, R_i \Big] = 0$ $\Rightarrow \hat{\tau}_{DR,*}$ is consistent.

- \rightarrow Parametric or nonparametric estimation of $\mu_t(\cdot)$ and $e(\cdot) \rightarrow$ **interpretability of** $\hat{\tau}_{DR}$ is the same.
- \rightarrow Nonparametric estimation using random forests to handle heterogeneous data and missing values consistently under MCAR [4].

FIRST RESULTS

On IHDP data [2]:

 \rightarrow Simulated observational data from original experimental data variables, \rightarrow 6 quant. quant. outcome, binary treatment \rightarrow MCAR and MNAR \rightarrow Simulate *Y* w/ and w/o CIO. \rightarrow Same methods as in Simulations part.



• Proposition of new double robust TE estimator, based on random forests, handling incomplete confounders.

• DR estimator $\tau_{DR,*}$.

missing values:

NAs (SAEM) [3],

gression,

• (Generalized) propensity

score (PS) estimation with

- (a) imputation (mean, mice, LR

– (b) logistic regression handling

- (c) random forest with missing in-

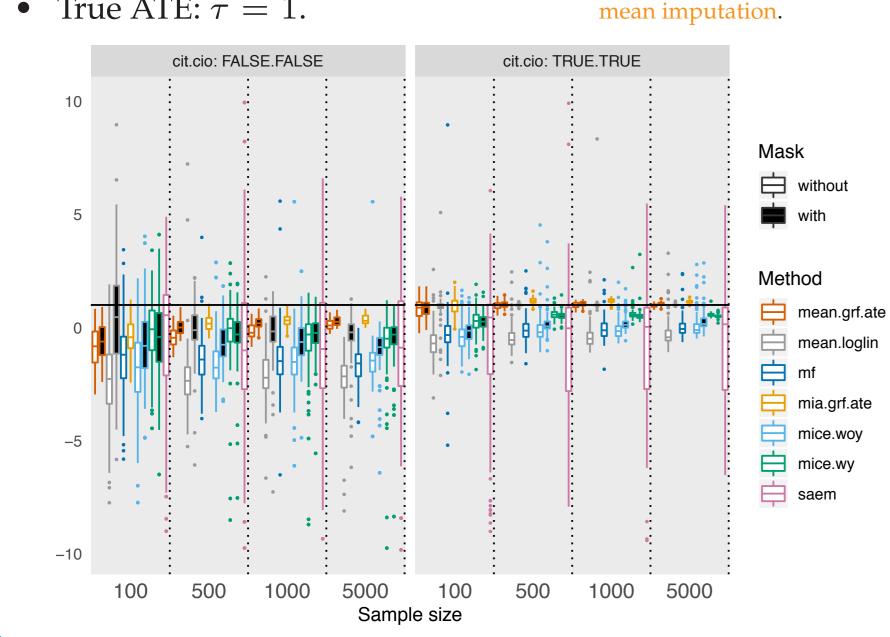
corporated in attributes (MIA) or

matrix factorization) + logistic re-

• Application to critical care patient data.

SIMULATIONS

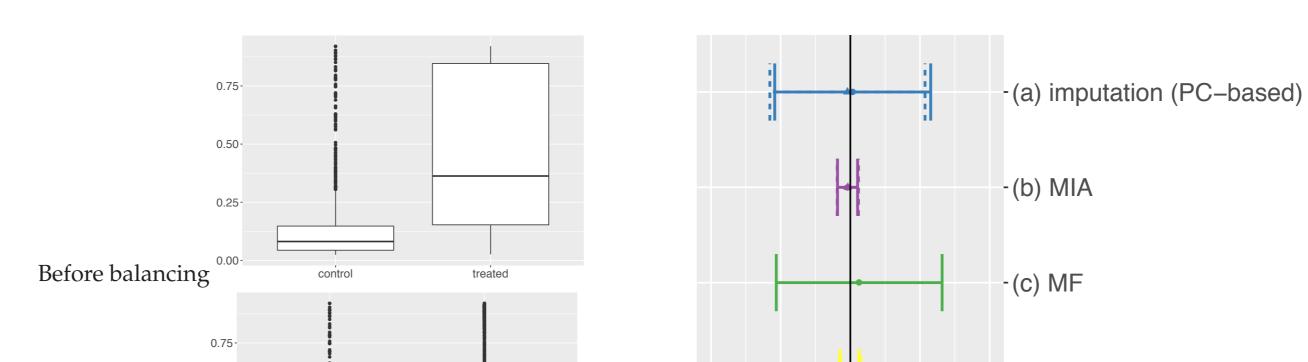
- i.i.d observations from mixture model: $X \mid C =$ $c \sim \mathcal{N}(\mu_c, \Sigma_c), X \in \mathbb{R}^{10}$
- Logistic-linear model for $W \in \{0, 1\}, Y \in \mathbb{R},$ satisfying or not CIT/CIO. • MNAR (NA in X_1, \ldots, X_5 depend on
- X_6, \ldots, X_{10}).
- True ATE: $\tau = 1$.



 \Rightarrow Empirically, importance of CIO assumption increases with the amount of missing values, for all mechanisms.

On Traumabase:

- \rightarrow 12 identified confounders (continuous & discrete & categorical).
- \rightarrow 3169 patients with traumatic brain injury.
- \rightarrow 12% treated patients.
- \rightarrow 0% 23% of missing values (in confounders).
- \rightarrow Fully observed treatment and outcome.



- \rightarrow PS and outcome regression using random forests with sample splitting and cross-splitting (R-package grf)
- \rightarrow 5 estimation approaches: (a) Imputation (pca-based) (b) Missing Incorporated in Attribute (c) Low-rank approximation [5] (d) Mean imputation (e) Imputation (mice)
 - Difference in percentage points between mortality rates in treatment and control groups.
 - No evidence for rejecting null hypothesis of no effect of TA on in-ICU mortality among TBI patients.

FUTURE RESEARCH

- Prove consistency / double robustness of the proposed ATE estimator in cases other than MCAR (and for heterogeneous data).
- TBI is very heterogeneous in terms of clinical presentation, pathophysiology and outcome \rightarrow heterogeneous TE estimation.
- Long-term objective: developing a decision support tool for clinical care management.
- Compare results to the soon to be published randomized controlled trial CRASH-3 results [1].

After balancing

0.50

0.25

[1] Y. Dewan, E. O. Komolafe, J. H. Mejía-Mantilla, P. Perel, I. Roberts, and H. Shakur. Crash-3-tranexamic acid for the treatment of significant traumatic See **R-miss-tastic**, also brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials, 13(1):87, 2012. a unified platform on

-(d) Mean

-(e) imputation (MICE)

[2] J. L. Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational and Graphical Statistics*, 20(1):217–240, 2011.

-5.0

-2.5 0.0

missing values methods W. Jiang, J. Josse, and M. Lavielle. Logistic regression with missing covariates-parameter estimation, model selection and prediction. arXiv preprint, [3] and workflows: 2018.

2.5

5.0

- [4] J. Josse, N. Prost, E. Scornet, and G. Varoquaux. On the consistency of supervised learning with missing values. arXiv preprint, 2019.
- [5] N. Kallus, X. Mao, and M. Udell. Causal inference with noisy and missing covariats via matrix factorization. *arXiv preprint*, 2018.
- J. M. Robins, A. Rotnitzky, and L. P. Zhao. Estimation of regression coefficients when some regressors are not always observed. Journal of the American [6] Statistical Association, 89(427):846-866, 1994
- [7] P. R. Rosenbaum and D. B. Rubin. Reducing bias in observational studies using subclassification on the propensity score. *Journal of the American* Statistical Association, 79(387):516–524, 1984

• Next: different TE w.r.t. severity of TBI and extra-cranial lesions?

