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EHESS; École Polytechnique; Stanford Business School; Traumabase R� Group
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Introduction



Traumabase

• 20, 000 patients

• 250 continuous and categorical variables: heterogeneous

• 16 hospitals: multilevel data

• 4,000 new patients/ year

Center Accident Age Sex Weight Lactactes BP shock . . .

Beaujon fall 54 m 85 NM 180 yes

Pitie gun 26 m NR NA 131 no

Beaujon moto 63 m 80 3.9 145 yes

Pitie moto 30 w NR Imp 107 no

HEGP knife 16 m 98 2.5 118 no
...

. . .

) Estimate causal e↵ect: Administration of the treatment

”tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients
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Missing values
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Causal inference: classical

framework



Potential outcome framework (Neyman, 1923, Rubin, 1974)

Causal e↵ect

Binary treatment w 2 {0, 1} on i-th individual with potential outcomes

Yi (1) and Yi (0). Individual causal e↵ect of the treatment:

�i = Yi (1)� Yi (0)

• Problem: �i never observed (only observe one outcome/indiv).

Causal inference as a missing value pb?

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 NA T

-6 45 F 0 F NA
0 15 M 1 NA F

. . . . . . . . . . . .

-2 52 M 0 T NA

• Average treatment e↵ect (ATE) ⌧ = E[�i ] = E[Yi (1)� Yi (0)]:

The ATE is the di↵erence of the average outcome had everyone

gotten treated and the average outcome had nobody gotten

treatment.

) First solution: estimate ⌧ with randomized controlled trials (RCT).
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Observational data

Non random assignment ! Confounding

Mortality rate 20% - treated 38% - not treated 16%: treatment kills?

survived deceased Pr(survived | treatment) Pr(deceased | treatment)

TA not administered 2,167 (68%) 399 (13%) 0.84 0.16
TA administered 374 (12%) 228 (7%) 0.62 0.38

Table 1: Occurrence and frequency table for traumatic brain injury patients

(total number: 3,168).
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Unconfoundedness and the propensity score

Assumptions

• n iid samples (Xi ,Yi ,Wi ),

• Yi = WiYi (1) + (1� Wi )Yi (0) (SUTVA)

• Treatment assignment is random conditionally on Xi :

{Yi (0),Yi (1)} ?? Wi |Xi ⌘ unconfoundedness assumption.

Propensity score and overlap assumption

e(x) , P(Wi = 1 |Xi = x) 8 x 2 X .

We will assume overlap, i.e. 0 < e(x) < 1 8 x 2 X .

Key property

e is a balancing score, i.e. under unconfoundedness, it satisfies

{Yi (0),Yi (1)} ?? Wi | e(Xi )
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Propensity based estimators

Inverse Propensity Weighted estimator

⌧̂IPW , 1

n

n!

i=1

"
WiYi

ê(Xi )
� (1� Wi )Yi

1� ê(Xi )

#
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Propensity based estimators

Inverse Propensity Weighted estimator

⌧̂IPW , 1

n

n!

i=1

"
WiYi

ê(Xi )
� (1� Wi )Yi

1� ê(Xi )

#

Augmented IPW: a doubly robust estimator

Define µ(w)(x) := E[Yi (w) |Xi = x].

!̂ AIPW :=
1

n

n!

i=1

"
µ̂(1)(Xi )� µ̂(0)(Xi ) + Wi

Yi � µ̂(1)(Xi )

ê(Xi )
� (1� Wi )

Yi � µ̂(0)(Xi )

1� ê(Xi )

#

is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.

) The AIPW has better statistical properties than IPW (Robins et al.,

1994; Chernozhukov et al., 2018).

! Possibility to use any (machine learning) procedure such as random forests, deep

nets, etc. to estimate ê(x) and µ̂(w)(x) without harming the interpretability of the

causal e↵ect estimation. R package grf (Athey et al., 2019)
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Causal inference: with missing

attributes?



Unconfoundedness with missing attributes?

Without any changes to the previous framework, the only straightforward

– but generally biased – solution is complete-case analysis.

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

NA 20 F 1 NA T

-6 45 NA 0 F NA
0 NA M 1 NA F

NA 32 F 1 NA T

1 63 M 1 F NA
-2 NA M 0 T NA
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Unconfoundedness with missing attributes?

Without any changes to the previous framework, the only straightforward

– but generally biased – solution is complete-case analysis.

! Often not a good idea! What are the alternatives?

Two families of methods

• Unconfoundedness despite missingness

• Classical missing values mechanisms (MCAR, MAR, MNAR, (Rubin,
1976))

8



Unconfoundedness with missing attributes?

Unconfoundedness despite missingness

Adapt the initial assumptions s.t. treatment assignment is

unconfounded given only the observed information, that is, observed

covariates and the response pattern.
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Unconfoundedness with missing attributes?

Notations

¥ response pattern R " { NA, 1} p , Rj , 1{Xj is observed} + NA 1{Xj is missing},

¥ X⇤ = R # X " { R $ NA} p

Unconfoundedness despite missingness

Treatment is unconfounded given X ! :

{Yi (1),Yi (0)} ?? Wi |X ! , (1)

or alternatively:
{Yi (1),Yi (0)} ?? Wi |Xi ,Ri ,

$
%&

%'

CIT: Wi ?? Xi |X !
i ,Ri

or

CIO: Yi (t ) ?? Xi |X !
i ,Ri for t 2 {0, 1}

(2)
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Unconfoundedness with missing attributes?

Unconfoundedness despite missingness

Treatment is unconfounded given X ⇤
:

{Yi (1), Yi (0)} ?? Wi |X ⇤, (1)

or alternatively:
{ Yi (1),Yi (0)} %% Wi | Xi ,Ri ,

8
><

>:

CIT: Wi %%Xi | X⇤
i ,Ri

or

CIO: Yi (t) %%Xi | X⇤
i ,Ri for t " { 0, 1}

(2)

(a) CIT

X X⇤ R

W w Y (w)

(b) CIO

X X⇤ R

W w Y (w)
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Generalized propensity score and random forests

Generalized propensity score (Rosenbaum and Rubin, 1984)

e! (X ! ) = P(W = 1 |X ! ).

! Allows to balance treatment and control groups on the observed

information X ! in the case of missing values (1).
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! Random forests allow incorporating missing values directly since they

allow semi-discrete variables (e.g. X ! 2 (R ⇥ NA)p).
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are possible either on observed variables or on response pattern (Josse

et al., 2019).
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Generalized propensity score and random forests
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e! (X ! ) = P(W = 1 |X ! ).
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covariate Xj and threshold z, there are three possibilities:

{X !
j  z or X !

j = NA} vs {X !
j > z}

{X !
j  z} vs {X !

j > z or X !
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!

r "{ 0,1} p

E[W |X ! ,R = r ]1R=r .
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Unconfoundedness with missing attributes?

Assumption on missing values mechanism

Assume standard unconfoundedness and MAR mechanism. Then

multiple imputation using (X ,W ,Y ) is consistent (Hill (2004); Seaman

and White (2014); Leyrat et al. (2019)).
? ?

?

?

?
?

??

?
?

??

?
?

! Problem: can we use Y for propensity score estimation?

! What happens with informative missing values?
10



Simulations

Setup

¥ Di↵erent data generating models (linear, nonlinear, latent, etc.)

¥ Di↵erent missingness mechanisms

Figure 2: Estimated and true average treatment e↵ect (! = 1, MCAR)
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Simulations

Setup

¥ Di↵erent data generating models (linear, nonlinear, latent, etc.)

¥ Di↵erent missingness mechanisms

Results

¥ AIPW estimators perform better than their IPW counterparts.

¥ For !̂ mia, the unconfoundedness despite missingness is indeed necessary.

¥ !̂ mia unbiased for all missingness mechanisms, especially for MNAR.

¥ Multiple imputation (mice) only requires standard unconfoundedness, but cannot

handle informative missing values.
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Application: Traumabase



Plausibility of underlying assumptions with Traumabase data

• Unconfoundedness despite missingness: seems plausible (physicians

decide based on what they observe+record)

• Many variables have informative missing data.

12



Results

40 covariates, 13 confounders. 3,168 patients.

ATE estimations (& 100) for the e↵ect of tranexamic acid on in-hospital mortality for

TBI patients. Imputations on all patients (TBI + no-TBI).

●

●

●

●

●

●

(c) imputation (MICE)

(b) MF

(a) MIA

! 5 0 5 10 15 20
ATE (in %)

Im
putation.set

Imputation.method
●

●

●

●

FAMD

MICE

MIA

MF

as.factor(type)
dr

ipw

ATE estimation on tbi patients

(y -axis: estimation approach, solid: DR, dotted: IPW, turquoise: without adjustment), (x-axis:
ATE estimation with bootstrap CI)
We compute the mortality rate in the treated group and the mortality rate in the control group
(after covariate balancing). The obtained value corresponds to the di↵erence in percentage points

between mortality rates in treatment and control. 13



Conclusion



Conclusion and perspectives

Conclusion

• Missing attributes alter causal analyses.

• Additional assumptions guaranteeing either unconfoundedness

given missing values or MAR.

• New proposal to handle missing values in causal inference.

• Prefer AIPW to IPW estimators, in theory and in practice.

• First application on real data.

Ongoing work

• Extension to heterogeneous treatment e↵ects (Athey and Imbens,

2015) and optimal policy learning (Imai and Ratkovic, 2013).

• Compare results to the ones from CRASH3 study (Dewan et al. (2012)).

• Apply methodology to other causal questions on the Traumabase

(e.g. treatment “bundles” in case of TBI).
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• Extension to heterogeneous treatment e↵ects (Athey and Imbens,

2015) and optimal policy learning (Imai and Ratkovic, 2013).

• Compare results to the ones from CRASH3 study (Dewan et al. (2012)).

• Apply methodology to other causal questions on the Traumabase

(e.g. treatment “bundles” in case of TBI).
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Missing value website

“One of the ironies of Big Data is that missing data play an ever more

significant role” (R. Samworth, 2019)

More information and details on

missing values: R-miss-tastic

platform.

! Theoretical and practical

tutorials, popular datasets,

bibliography, workflows (in R),

active contributors/researchers in

the community, etc.

https:
//rmisstastic.netlify.com

M., Josse, J., Tierney, N., & Vialaneix,

N. (2019). R-miss-tastic: a unified

platform for missing values methods and

workflows. arXiv preprint

arXiv:1908.04822.

Interested in contribute to our platform? Feel free to contact us!
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Traumabase

• 20, 000 patients

• 250 continuous and categorical variables: heterogeneous

• 16 hospitals: multilevel data

• 4,000 new patients/ year

Graph produced using DAGitty (Textor et al. (2011))

) Estimate causal e↵ect: Administration of the treatment

”tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients



Simulations: importance of CIT/CIO and performance of ⌧̂mia

Conditional independences

CIT: W ⇠ Z �R (where Rij = 1{Zij is observed} and # = Hadamard product).

Example: for fixed " " R4 and ! " R:

r i = (1, 1, 0, 0, 0, 1, 0, 0, 0, 1) !
logit(P(Wi = 1|Zi

obs = ziobs ,R
i = r i )) = " 0 + " 1zi1 + " 2zi2 + " 6zi6 + " 10zi10

r j = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) ! logit(P(Wj = 1|Zj
obs = zjobs ,R

i = r j )) = " 0 + " 2z
j
2

¬CIT: logit(P(W i = 1|Z i = zi )) = ↵0 + ↵Tzi .

CIO: Y ⇠ Z � R.
Example: for fixed # " R4 and ! " R:

r i = (1, 1, 0, 0, 0, 1, 0, 0, 0, 1) !
E(Y i |Zi

obs = ziobs ,R
i = r i ,Wi = wi ) = #0 + #1zi1 + #2zi2 + #6zi6 + #10zi10 + ! wi

r j = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) !
E(Y j |Zj

obs = zjobs ,R
i = r j ,Wj = wj ) = #0 + #2z

j
2 + ! wj

¬CIO: E(Y i |Z i = zi ,W i = w i ) = �0 + �Tzi + ⌧w i .
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