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Introduction



Traumabase

e 20,000 patients

e 250 continuous and categorical variables: heterogeneous
e 16 hospitals: multilevel data

e 4,000 new patients/ year

Center  Accident Age Sex Weight Lactactes BP  shock
Beaujon fall 54 m 85 NM 180  vyes
Pitie gun 26 m NR NA 131 no
Beaujon moto 63 m 80 3.9 145 yes
Pitie moto 30 w NR Imp 107 no
HEGP knife 16 m 98 2.5 118 no



Traumabase

20,000 patients
250 continuous and categorical variables: heterogeneous

16 hospitals: multilevel data
e 4,000 new patients/ year

Center  Accident Age Sex Weight Lactactess BP  shock

Beaujon fall 54 m 85 NM 180  vyes
Pitie gun 26 m NR NA 131 no
Beaujon moto 63 m 80 3.9 145 yes
Pitie moto 30 w NR Imp 107 no
HEGP knife 16 m 98 25 118 no

= Estimate causal effect: Administration of the treatment
"tranexamic acid” (within 3 hours after the accident) on the outcome
mortality for traumatic brain injury patients
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Causal inference: classical
framework



Potential outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect
Binary treatment w € {0,1} on i-th individual with potential outcomes
Yi(1) and Y;(0). Individual causal effect of the treatment:

A; =Y(1) —Y;(0)

e Problem: A; never observed (only observe one outcome/indiv).
Causal inference as a missing value pb?

Covariates Treatment | Outcome(s)
X1 Xa X W Y(0) Y(1)
1.1 20 F 1 NA T
-6 45 F 0 F NA

0 15 M 1 NA F
2 52 M 0 T NA




Potential outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect
Binary treatment w € {0, 1} on i-th individual with potential outcomes
Yi(1) and Y;(0). Individual causal effect of the treatment:

A; =Y;(1) = Y;(0)

e Problem: A; never observed (only observe one outcome/indiv).
Causal inference as a missing value pb?

e Average treatment effect (ATE) 7 = E[A;] = E[Y;(1) — Y;(0)]:
The ATE is the difference of the average outcome had everyone
gotten treated and the average outcome had nobody gotten

treatment.

= First solution: estimate 7 with randomized controlled trials (RCT).



Observational data

Non random assignment — Confounding

Mortality rate 20% - treated 38% - not treated 16%: treatment kills?

survived deceased Pr(survived | treatment)  Pr(deceased | treatment)
TA not administered | 2,167 (68%) 399 (13%) 0.84 0.16
TA administered 374 (12%) 228 (7%) 0.62 0.38

Table 1: Occurrence and frequency table for traumatic brain injury patients
(total number: 3,168).



Unconfoundedness and the propensity score

Assumptions
e niid samples (X;,Y;, W;),
o Y, =W,;Y;(1)+ (1 —W;)Y;(0) (SUTVA)
e Treatment assignment is random conditionally on X;:
{Y:(0),Y;(1)} L W;|X; = unconfoundedness assumption.
Propensity score and overlap assumption
e(x) =P(W; =1|X; =x) VxeAX.

We will assume overlap, i.e. 0 <e(x) <1 VxeX.

e is a balancing score, i.e. under unconfoundedness, it satisfies

{Yi(0),Yi(1)} L W;|e(X;)



Propensity based estimators
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Propensity based estimators

in #
WY (- W)Y
e(X;)  1-€(X)

%IPWAE
n

=1

Define f1(,)(X) := E[Y;(w) [ X; = X].
' #

b Yi— Xi Yi— Xi
Papw = % A1y (Xi) — Aoy (Xi) + Wiééli)((lf))() —(1- Wi)%?;((i))

i=1

is consistent if either the fi(,)(X) are consistent or €(x) is consistent.

= The AIPW has better statistical properties than IPW

I Possibility to use any (machine learning) procedure such as random forests, deep
nets, etc. to estimate é(x) and fl(,)(x) without harming the interpretability of the
causal effect estimation. R package grf



Causal inference: with missing
attributes?




Unconfoundedness with missing attributes?

Without any changes to the previous framework, the only straightforward
— but generally biased — solution is complete-case analysis.

Covariates | Treatment | Outcome(s)
X1 Xo X3 W Y(0) Y(1)
NA 20 F 1 NA T
-6 45 NA 0 F NA
0 NA M 1 NA F
NA 32 F 1 NA T

1 63 M 1 F NA
2 NA M 0 T NA




Unconfoundedness with missing attributes?

Without any changes to the previous framework, the only straightforward
— but generally biased — solution is complete-case analysis.

Covariates Treatment | Outcome
X1 Xy X3 W Y
NA 20 F 1 T
-6 45 NA 0 F

0 NA M 1 F
NA 32 F 1 T
1 63 M 1 F
-2 NA M 0 T




Unconfoundedness with missing attributes?

Without any changes to the previous framework, the only straightforward
— but generally biased — solution is complete-case analysis.
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Unconfoundedness with missing attributes?

Without any changes to the previous framework, the only straightforward
— but generally biased — solution is complete-case analysis.

— Often not a good idea! What are the alternatives?

Two families of methods

e Unconfoundedness despite missingness
e Classical missing values mechanisms (MCAR, MAR, MNAR,
)



Unconfoundedness with missing attributes?

Unconfoundedness despite missingness
Adapt the initial assumptions s.t. treatment assignment is
unconfounded given only the observed information, that is, observed

covariates and the response pattern.



Unconfoundedness with missing attributes?

Notations

¥ response pattern R " { NA,1}?, R; £ ﬂ{xj is observed} T NA ﬂ{xj is missing } 1
¥ X*=R# X"{ R$ NA}P

Unconfoundedness despite missingness

Treatment is unconfounded given X' :
{Yi(1), Yi(0)} L W; | X}, (1)

or alternatively:
$ {Yi(1),Y:i(0)} L W;[X;,R;,

% CIT: W,' A X,‘ | XII ,R,’ (2)
% or ‘
ClO: Y,(t) JLX,|X, ,R; fort e {O,l}



Unconfoundedness with missing attributes?

Unconfoundedness despite missingness

Treatment is unconfounded given X *:
£Yi(1), Yi(0)} L Wi X", (1)

or alternatively:
{Yi(1), Yi(0)} % W;|X;, R,

CIT: W; % X; | X, R; @)
or
ClO: Yi(t) % X | X*, R for t"{ 0,1}

(b) CIO

X — X




Generalized propensity score and random forests

Generalized propensity score
e (X')=PW =1|X").

— Allows to balance treatment and control groups on the observed
information X' in the case of missing values (1).



Generalized propensity score and random forests

Generalized propensity score
e (X')=PW =1|X").

— Allows to balance treatment and control groups on the observed
information X' in the case of missing values (1).

— Random forests allow incorporating missing values directly since they
allow semi-discrete variables (e.g. X' € (R x NAP).

— With specific representation/encoding of missing values (MIA), splits
are possible either on observed variables or on response pattern



Generalized propensity score and random forests

Generalized propensity score
e (X')=P(W =1|X").

— Random forests allow incorporating missing values directly since they
allow semi-discrete variables (e.g. X' € (R x NAP).

— With specific representation/encoding of missing values (MIA), splits
are possible either on observed variables or on response pattern

— recursively find partition that minimizes empirical risk. For every
covariate X; and threshold z, there are three possibilities:

{X; <zorX; =NA vs {Xj >z}
{X; <z} vs {Xj >zorX; =NA
{X; =NA vs {X; #NA



Generalized propensity score and random forests

Generalized propensity score (Rosenbaum and Rubin, 1984)
e (X')=P(W =1|X").

— Random forests allow incorporating missing values directly since they
allow semi-discrete variables (e.g. X' € (R x NAP).
— With specific representation/encoding of missing values (MIA), splits
are possible either on observed variables or on response pattern (Josse
et al., 2019).

— recursively find partition that minimizes empirical risk. For every
covariate X; and threshold z, there are three possibilities:

{X; <zorX; =NA vs {X/ >z}
! ! L
{X; <z} vs {X; >zorX; =NA
{X; =NA vs {X; #NA
— This procedure targes:

e (X')= EW X', R =r]lg_,.
r{ 0,1}»



Unconfoundedness with missing attributes?

Assumption on missing values mechanism
Assume standard unconfoundedness and MAR mechanism. Then
multiple imputation using (X, W ,Y ) is consistent (
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— Problem: can we use Y for propensity score estimation?
. . .. 10
— What happens with informative missing values?



Setup

¥ Different data generating models (linear, nonlinear, latent, etc.)
¥ Different missingness mechanisms

Figure 2: Estimated and true average treatment effect (! = 1, MCAR)
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Setup

¥ Different data generating models (linear, nonlinear, latent, etc.)
¥ Different missingness mechanisms

Figure 2: Estimated and true average treatment effect (! = 1, MNAR)
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Setup

¥ Different data generating models (linear, nonlinear, latent, etc.)

¥ Different missingness mechanisms

Results
¥ AIPW estimators perform better than their IPW counterparts.

¥ For I'ia, the unconfoundedness despite missingness is indeed necessary.
¥ I',ia unbiased for all missingness mechanisms, especially for MNAR.

¥ Multiple imputation (mice) only requires standard unconfoundedness, but cannot
handle informative missing values.

11



Application: Traumabase




Plausibility of underlying assumptions with Traumabase data

e Unconfoundedness despite missingness: seems plausible (physicians
decide based on what they observe-+record)

e Many variables have informative missing data.

12



40 covariates, 13 confounders. 3,168 patients.

ATE estimations (& 100) for the effect of tranexamic acid on in-hospital mortality for
TBI patients. Imputations on all patients (TBI + no-TBI).

(a) MIA

(b) MF

(c) imputation (MICE)

15 5 10 15 20
(y-axis: estimation approach, solid: DR, dotted: IPW, turquoise: without adjustment), (x-axis:
ATE estimation with bootstrap CI)
We compute the mortality rate in the treated group and the mortality rate in the control group
(after covariate balancing). The obtained value corresponds to the difference in percentage points
between mortality rates in treatment and control. 13



Conclusion




Conclusion and perspectives

Conclusion

e Missing attributes alter causal analyses.

Additional assumptions guaranteeing either unconfoundedness
given missing values or MAR.

e New proposal to handle missing values in causal inference.

Prefer AIPW to IPW estimators, in theory and in practice.

First application on real data.

14



Conclusion and perspectives

Conclusion

e Missing attributes alter causal analyses.

Additional assumptions guaranteeing either unconfoundedness
given missing values or MAR.

e New proposal to handle missing values in causal inference.

Prefer AIPW to IPW estimators, in theory and in practice.

First application on real data.

Ongoing work
e Extension to heterogeneous treatment effects (Athey and Imbens,
2015) and optimal policy learning (Imai and Ratkovic, 2013).
e Compare results to the ones from CRASH3 study ( ).

e Apply methodology to other causal questions on the Traumabase

(e.g. treatment “bundles” in case of TBI).
14



value website

“One of the ironies of Big Data is that missing data play an ever more
significant role” (R. Samworth, 2019)

More information and details on tutorials, popular datasets,
missing values: R-miss-tastic bibliography, workflows (in R),
platform. active contributors/researchers in

the community, etc.

https:
/Irmisstastic.netlify.com

M., Josse, J., Tierney, N., & Vialaneix,
N. (2019). R-miss-tastic: a unified

platform for missing values methods and

workflows. arXiv preprint

— Theoretical and practical arXiv:1908.04822.

15
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Traumabase

e 20,000 patients

e 250 continuous and categorical variables: heterogeneous
e 16 hospitals: multilevel data

e 4,000 new patients/ year

Pre-hospital (and before treatment)
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Simulations: importance of CIT/CIO and performance of 7,

Conditional independences

CIT: W ~Z06R (where Rjj = 117, is observeqy and # = Hadamard product).
Example: for fixed" " R*and! " R:

r":(1100010001)l

logit(P(W' = 1|1Z], = 2}, , R = r')) =" o +" 12 +" 225 + " 625 + " 102,

P =(0,1,0,0,0,0,0,0,0,0) ! logit(P(Wi =1|Z, =7, R =r))="0+"»2]

obs’

—CIT: logit(P(W' =1|Z" = 2)) = ag + a'Z'.

ClIO:Y ~ZGOR.
Example: for fixed # " R*and! " R:
rf:(1,1,00010001)

E(Y’]Z{Qbs obs' Ri=ri W’ ) = #o + #12{ + #2z£ + #6Zé “r#lOZ{O +! w!
rf:(o,loooooooo)
E(YIZ, =2, R =r, Wi =wl) =# +#z+!w

-CIO: E(Y/|Zl =2/, W =w') = By + BTZ" + 7w’
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